
August, 1990
Volume 1, No. 6

The Journal of Apple II Programming

Toto, I don't think
we're in Kansas anymore.

In this issue:

$3.50

I Computer Title Author Page I
both The Publisher's Pen Ross Lambert 3

re: the Publishing Time Warp, the Subscriber Survey, Our Directions

llgs Multi-Bank James Hodge 5
re: A Jigs monitor utility

8 bit Checking qut the Locals Ross Lambert 9
re: Ross delivers FN Local and FN SetEOF

both Getting Over Extended Doni Grande 18
re: the good Dr. Grande prescribes accessing extended keyboards

8 bit Generic StartUpS Jerry Kindall 26
re: a standard startup routine for 8 bit assembly

both Vaporware Murphy Sewall 30
re: the industry-wide ruminations of Murph the Magnificent

llgs Get Control of Yourself Jay Jennings 32
re: getting control over -NewControl2

" Fantastic Savings
" Easy Installation
.. No Solder Required
" Complete Instructions
" 10 Year Shelf Life
" Top Quality Lithium

Slide-On kits are $ 14.95 ea.
$12 ea. in quantities of 10+.

WRAITH
Adventure Game

P - PL1'> M
H - Help .\

New kit restores your Apple IIGs

If you purchased an Apple IIGS computer before August 1989 (51 2K model), a
Lithium battery was soldered onto the computer board at the factory and the internal
clock started ticking . It is just a matter of time until the battery runs out of juice and
your computer forgets what day it is and any special settings you have se lected in
the Control Panel.

If the softwcre you are running uses the date and time to keep track of records
you could be in for real trouble when the clock runs out. The IIGS is also known to
lose disk drives along with numerous other side effects caused by a dead battery.

Before the introduction of Nile Owl's Slide-On batte ry, the normal method for
replacing the IIGS battery was to pack your computer up and take it to your local
Apple dealer. That was very inconvenient , time consuming, and expensive for the
typical computer owner.

Slide-On battery replacement is not much more difficult than chang ing a light
bulb. Using wire cutters , scissors, or nail clippers , the old battery is removed leaving
the original wires still soldered to the mother board The new Slide-On battery has
special terminals which have been des igned to fit onto the old battery w ires . It
usually takes only a couple of minutes. Complete, easy-to-follow instruct ions are
included with every kit.

Typically , our customers have reported that the original equipment batteries
have an average life expectancy of 2 to 3 years. This is about half as long as they
were supposed to last. Slide-On rep lacement kits include Heavy Duty batteries
which should provide for a longer battery service life

We highly recommend that every IIGS owner keep a spare battery on hand,
ready for when the inevitable battery fai lure occurs These Lithium batteries have a
shelf life of over 10 years, and come with a full 90 day sat isfact ion guarantee.

Font Collection - The A2-Ccntra! sruff"has .lf Ji'nt ymrs
searching out and compiling lzwuireds of 1/(;Sj(mrs. These
fonts are packed onto eight 3 5 inch disks. Thc_r work h'ith
fiGS paint, draw, and word processing programs. Includes a
program to unpack them and an Appleworks datafi!e . $39

Special
Introductory
Price $9.95* (n(J -.-~~ 1(1 l 1l"• l ~flo ()-.....,1

This graphic adventure game comes complete on a
s ingle 3.5 inch disk with on-screen instructions , a
map, demo play opti on, and dungeons w hich
were too vast and expansive to fit on 5.25" disks.

The object is to search out and destroy the evil
WRAITH to save the mythical island of Arathia.
To succeed at thi s quest the adventurer must fend
off many monsters , learn magic spells, and buy
weapons and armor to defeat the evil WRAITH.

Works on ANY Apple][with a 3.5" drive. It
will have a retail price of $14.95 . One of the best
software values ever' * Offer ex pi res 12/31 /90

Please g ive us a call today at: (913) 362-9898
JP!hoto·~(\G~py;:.lb:© FAX: (9 13) 362-5798

~-----------------l

I Nite Owl Productions I
I 5734 Lamar Avenue A I
I Mission, KS 66202 I
I USA I L _________________ J

(Cut & Pa, tc Address Label)

Telephone f/: : _

Crcd 1L Card or 1'0#

Quantity Description Price Amoimt
Slide-On Battery Ki ts $ 14.95

WRAITH Adventure $ 9.95

Font Collection $ 39.00
Signature for Credit Card Orde rs

Shippi ng &
Please include $2 shipping and !Iandling

handling I $5 for overseas orders. r-1-,-0-.-r-A-L-+----------t
Kansas residents add 6% sales tax.

Prices may Change without notice.

Copyright (C) 1990, Ariel Publishing, All Rights ReseNed

Publisher & Editor-in-Chief
Classic Apple Editor
Apple llgs Editor
Contributing Editors

Subscription SeNices

Ross W. Lambert
Jerry Kindall
Eric Mueller
Walter Torres-Hurt
Mike Westerfield
Steve Stephenson
Jay Jennings
Tamara Lambert
Becky Mi lton

Introductory subscription prices in US dollars:

·magazine
1 year $29.95 2 years $56

• disk
1 year $69.95 6 mo $39.95 3 mo. $21

Canada and Mexico add $5 per year per product ordered.
Non-North American orders add $15 per year per product
ordered.

WARRANTY and LIMITATION of LIABILITY

Ariel Publ ishing, Inc. warrants that the information in e/~ 6 is
correct and useful to somebody somewhere. Any subscriber
may ask for a full refund of their last subscription payment at
any time. Ariel Publishing's LIABILITY FOR ERRORS AND
OMISSIONS IS LIMITED TO THIS PUBLICATION'S PUR
CHASE PRICE. In no case shall Ariel Publishing, Inc., Ross
W. Lambert, the editorial staff, or article authors be liable for
any incidental or consequential damages, nor for ANY dam
ages in excess of the fees paid by a subscriber.

Subscribers are free to use program source code printed
herein in their own compiled, stand-alone applications with no
licensing application or fees required. Ariel Publishing prohib
its the distribution of source code printed in our pages
without our prior permission.

Direct all correspondence to: Ariel Publishing, Inc., P.O. Box
398, Pateros, WA 98846 (509) 923-2249 (voice), (509) 689-
3136 (fax)

Apple, Apple II, Apple lie, Apple llgs, Apple lie, Apple lie+, Ap
ple Talk, Apple Programmers Workshop, and Macintosh are
all registered trademarks of Apple Computers, Inc.

Apple Works is a registered trademark of Claris, Corp.

ZBasic is a registered trademark of Zedcor, Inc.

Micol Advanced Basic is a registered trademark of Micol
Sytems, Canada

We here at Ariel Publishing freely admit our shortcomings, but
nevertheless strive to bring glory to the Lord Jesus Christ.

The
Publisher's
Pen
by Ross W. Lambert

I have finally entered the publisher's time warp. I am
writing for a post- A2 Central Summer Conference
audience even though the event has not happened
yet. For that reason we'll be covering the happenings
in more detail next month. About all I can tell you
now is that by the time you read this Apple will have
unveiled (but not officially released) some remark
able achievements in Apple II software engineering.
Probably the most remarkable is HyperCard GS. If
the rumors are correct, this critter can run stacks
written on the Macintosh. I bet somebody suffered to
make that happen.

According to the conference schedule, we'll also get
a look at an animation toolkit for the GS and a few
other goodies. I may not be able to discuss every
thing in great detail because many of the Apple, Inc.
seminars require non-disclosure agreements. Still,
we'll bring you all the news that fits in print, or
whatever.

So hang on until next month. I bet we scoop in Cider I
A+.

Half a birthday to you, half a birthday to you ...

8/16 is one half of one year old with this issue. I'd
like to use this occassion to humbly request your
analysis of our publication. We have included a
subscriber survey form toward the back of this issue
which is designed to be cut out. There is no "content"
on the back side of it or anything.

There are lots of questions on the form, some of
which are about you. Our intent with this survey is
not to be nosey, but rather to A) massage our content
to meet your desires, and B) get a demographic
profile of our subscribers. Let's be frank: advertisers
like that sort of thing. Even so, feel free to skip any
part of the form that you don't want to fill out.

This magazine is not nearly as dependent on adver
tising as most publications, but we'd be fools not to
encourage folks to travel that avenue.

WARNING: Let me strongly encourage you to fill out
the survey. These types of things tend to attract a
disproportionate number of the "least satisfied". If
you are pretty much happy with the magazine it is
important that you say so in order to help prevent us
from having a skewed view of the results. Ariel
Publishing, Inc. is most definitely a customer-driven
sort of operation, so if folks seem to be saying
"Jump!", our response will be "How high?"

The View From Pateros

At the risk of sounding arrogant, nearly 100% of the
mail we've gotten has suggested that 8 I 16 is the best
thing since frozen yogurt. I am proud of our work to
date , yes, but I know it is far from perfect. And a few
folks have shared their concems with me already.
Here's where I plan to put our emphasis in the
future:

0 More graphical presentation of concepts (a pic
ture is worth a thousand words, so to speak). This is

harder than it sounds.

0 More and lengthier explanations. Some of our
authors (including me) have made some pretty hefty
conceptual leaps at times.

0 More code in higher level languages (C. Pascal,
Micol Advanced Basic).

0 Earlier distribution. We're moving back produc
tion for the October issue by one full week. This
should get it to most of you by the first day or two of
the month.

0 Faster, more consistent service. We've hired two
part time people to help fill your orders and manage
our data entry. Such expansion is a fairly bold move
in the face ofthe current Apple II market. We are not
a mail-order software house. however. I do not plan
to aim for the 24-48 hour turnaround of the mail
houses. I do plan to get orders filled in approximately
five working days or better.

Those are my priorities for our second six months of
life. Now it is your tum to tell me yours.

== Ross ==

" ... the single most important business-oriented
product for the Apple II since Apple Works."

APPLE I I

BY CHARLES H. GAJEWA Y
..
,~,

~:· .
~.:
,, Masterful database. Are you

f ready for a sweeping statement? Here
goes: I think that DB Master Profes
sional (Stone Edge Technologies: $295)
is the single most important business
oriented product for the Apple II since
the introduction of AppleWorkl". As the
only true relational database program
for the Apple lie, lie, and IIGS, DBMP
can give a 128K Apple II the kind of
data-handling power and flexibility nor
mally associated with MS-DOS and
Macintosh systems running expensive
and hard-to-learn software. (A relational
database can link, or relate, information

from several data files.)
I jumped right into the program with

my standard test data- a pair of files
that tracks a record collection, with in
formation on album titles, artists, mu
sic category, song lengths, and com
posers. This test is complex, and many
well-regarded programs- including
Apple W orb-have failed miserably at
it. Even with very little experience, I
was able to get the system up and run
ning with DBMP in a surprisingly short
time.

Report generation is extremely pow
erful, making it easy to design anything
from a mailing label, to a point-of-sale
invoice (that automatically updates in
ventory records, of course), to custom
ized form letters. Whereas most data-

base programs must be combined with a
word processor to do complex reports or
mail merge, DBMP does it all .

The manuals are complete, well il
lustrated, and generally clear, although
they are sometimes overly technical and
fragmented. You will need to keep both
books handy at all times, especially as
you try out some of the more sophisti
cated features. And while the program
is operated with a simple menu system,
DBMP takes a fair amount of time to
learn because of its array of features and
options. DBMP gives you all the power
you need and can even import your
current files from AppleWorkl" (except
version 3.0) and other programs. •

Reprinted with permission from
Home Office Computing.

DB Master Professional Stone Edge Technologies, In c.
P.O. Box 3200 • Maple Glen, PA 19002 • (215) 641-1825

Multi-Bank: A Ilgs Monitor Utility

by James Hodge

Editor: We here at 8/16 are quite pleased to have
James write for us. As a long time CALL A.P.P.L.E.
author he has already wowed us with neat stuff on
many occassions. Welcome!

Modern computers are really something! Long gone
are the days when a 48KApple was considered a big
machine. Now you need 768K to 1280K to run many
common games and applications. To be fair, a lot of
the software available today is pretty impressive,
despite the hardware requirements.

Monster machines place an added burden on pro
grammers. It would have been nice if Apple had
endowed some of the IIgs monitor commands with
the ability to work across bank boundaries, but they
didn't. As a result, trying to clear out 10 or 12 banks
of memory, or find a byte pattern "needle" in the
memory "haystack" can be a tedious task. The
"Multi-Bank" monitor utility presented here can
ease some of the tedium by forcing the Apple to do
more of the work.

The Multi-Bank routine takes advantage of what is
probably the least used feature of the Apple monitor,
the ability to repeat some, or all, of the command
line. This is documented in the old _Apple][Refer
ence Manual_ on page 56 and in the new _Apple IIGS
Firmware Reference_ on page 46.

As explained in the Firmware Reference, the repeat
ing command trick alters the index that the monitor
uses as it scans the keyboard input buffer at $00/
0200. When the monitor locates and executes a
command it saves the value of the index at $00 I 0034
(also called YSAV) and then reloads the index regis
ter and resumes scanning the command line when it
has finished. By changing the value at $34, you tell
the monitor to continue parsing the input at some
other point in the keyboard buffer.

To see what happens to location $34 when the
monitor parses the command line, try the following
example (tilde characters H are used to indicate
spaces):

*n--34--34--34--34:0-<ret>

The result will look like this:

00/0034:06-.
00/0034:0A-.
00/0034: 0E-.

This will repeat until you press Control-Reset or shut
the machine off.

To make use of this trick there are a couple of rules
that must be observed. You need to start the repeat
ing portion of the command line with a letter com
mand (N. the monitor "normal video" command, is
suggested) and end the command line with "34:x ",
where xis a hex value specifying the position of the
start of the loop. To start the loop at the beginning of
the command line, x would equal 0 . The line MUST
end with a space. The manuals state that the only
way to end the loop is by pressing Control-Reset.

'The Multi-Bank routine takes
advantage of what is probably the
least used feature of the Apple
monitor, the ability to repeat
some, or all, ofthecommand line."

~ith a little extra machine language, the "repeat"
command becomes quite a t ime saver. Multi-Bank,

a routine that runs at $300, allows monitor com
mands to work throughout the memory of a Ilgs,
rather than being limited to a single bank at a time.
The upper limit of memory you wish to operate on is
hard-coded in the program. and when that limit is
reached Multi-Bank will terminate cleanly. Multi
Bank was designed to work in conjunction with the
pattern search (P) and fill memory (Z) monitor com
mands, but it will also work with the move (M) and
verify (V) commands. It's also possible to arrange a
command line to make Multi-Bank work with the
memory change and examine commands.

About Multi-Bank

On the first pass through Multi-Bank, an indirect
address pointer to the input buffer is set up at
locations $8 and $9 and a flag is set to indicate that
initialization has been performed. Multi-Bank then
searches for. and expects to find. the"<" character
within the first $40 bytes of the input buffer. Ifthe "<"
symbol isn't found in the first $40 bytes of the input
buffer, the command sequence will terminate. As
suming that it is found. Multi-Bank leaves the
pointer aimed at the two digit bank specification that
follows it. The initialization step will not be used
again. At this point Multi-Bank increments the bank
number and checks to see that it is within the limit
set by "max_bank". If it is, control returns to the
monitor and the rest of the command line will be
scanned and executed. If the bank number equals
max_bank, Multi-Bank will re-zero the "frstpass"
flag and place a Return character in the command
line to end the loop.

Multi-Bank expects to be called with the registers set
to their 8 bit width. Adding the command "SEP $30"
at the beginning of the routine would ensure the
condition was met, but right now it is the user's
responsibility. Multi-Bank will only work on the
bank number following the first "<" symbol in the
command line. The routine is machine-specific since
the value for max_bank is hard-coded. The value for
max_bank should equal the highest bank number
plus l. Different users will have to determine the
upper limit that suits their needs. Generally. you
won't want search (P) or zap (Z) commands operating
on the so called ROM disks provided by battery
backed up memory (e.g .. the Applied Engineering
Ramkeeper) or in memory allocated to RAM disks. As

with any monitor command that specifies a range of
memory to work with, you MUST be careful not to
reference the areas of memory containing the
softswitches (unless you like to tum on disk drives
and change the screen mode from text to trash).

Using Multi-Bank

Installing Multi-Bankmight take a little forethought.
If you are running ProD OS 8 or DOS 3.3 then you can
BLOAD MULTI.BANK. If, while in a GS/OS applica
tion, you expect to get into the "Visit Monitor" desk
accessory and use Multi-Bankyou'll want to put the
program on a RAM or ROM disk, or store it in a
(hopefully) unused area in memory, and then use the
memory move (M) command.

There are times during program development that I
need to know what areas of memory are being used.
Since I have an AE RamKeeper installed in my
system, it causes "clutter" to accumulate (old, junk
values in memory) that won't go away by simply
switching off the machine. A command to set most of
the memory in a Jigs to zeroes would look like this
(again, tilde characters (-) are used to indicate
spaces):

*n--0<02 / 0.ffffz--n--0/300g--n--3 4 : 0-<ret>

This example would first set bank 2 memory to
zeroes and then it would call the Multi-Bank routine
with the command "0/300g". Multi-Bank would do
its work and return control to the monitor. The rest
of the line would be parsed and executed and, since
$34 had been set to 0, the command line would
execute again, but with a bank value of 03. Th is
process would repeat until Multi-Bank reaches its
limit. at which point it would replace the next
command in the line with a Return character to force
the loop to terminate. The example starts at bank 2
so it will avoid the $COOO.COFF softswitch areas in
banks 0 and l. (Warning: This command string can
destroy the operating system in RAM memory. GS/
OS system 5.0 loads into RAM so that switching
between Applesoft and P8 applications and GS/OS
applications goes quickly. If you launched BASIC
under GS/ OS, you may need to switch your GS off
and on again to reboot your system.)

Using Multi-Bank with a pattem search (P) com
mand requires extra care in the way the command
line is formed. When the monitor processes a
search request it places a length byte at $200
followed by the pattem to search for. That de
stroys the first part of the command in the input
buffer. The workaround for this problem is to start
the command line with blanks or "N"s (Normal
video commands). There should be enough of a
buffer to allow for the search pattem and its length
byte. The value to store at $34 should point to a
letter command at the end of the pattem buffer
area. I usually leave an area slightly larger than I
need. rather than trying to figure out the smallest
space needed. Multi-Bank pattem searches look
like this:

*-----------n--\6b 08 e2\<02/
O.ffffp--n--0/300g--n--34 :b-<ret>

*nnnnnnnnnnnn--\uhi worldu\<00/
O. bfffp--n--0/300g--n--34 : b-<ret>

*n-----n--\uAppleu\<02/0.ffffp--n--0/
300g--n-212 . 215--n--34 :6 -<ret>

The first two examples show command lines with
buffer spaces larger than needed. The first
searches for a three byte pattern, and the second
example searches for the text "hi world" . (Note:
The high bit in the bytes of the text pattem will
depend on the system mask (F). Using the monitor
command "FF=F" before entering text into the
monitor will set the high bit, while the command
"7F=F" will clear it.)

The third example does a pattem search and calls
Multi-Bank, but before it repeats it dumps mem
ory in the range 0/212.215. This allows you to see
the bank values change, but it also clutters up the
display and makes it harder to see the output from
the search command.

It's possible to enhance the memory change
command to work across bank boundaries using
Multi-Bank with a creative command line . The
following example shows how to place a particular
byte sequence into multiple memory banks:

*34:1a--n--<01/1000:1-2-3--n--O/
300g--n--0/20a:a0--n--34:7-<ret>

The command "34: 1a" causes the monitor to skip the
"n <0 1 I 1000: 1 2 3" and go to the second "n" in the
command line (at $00/021a). In this case the index at
$34 is adjusted to point farther into the input buffer,
rather than towards the buffer start. When Multi-Bank
is called it sets up a pointer to the bank specifier
following the "<" character and then increments the
bank number. The next significant command, "0/
20a: aO". changes the "<" character to a blank. The
"<"character is needed only so Multi-Bank can find the
bank number. Control then loops back to repeat the
command line, starting at the normal video command
"n" at $00/0207. When the monitor executes this line
the second time the command "<01/1000:1 2 3" has
been changed to" 02/1000:1 2 3". so the values 1, 2,
and 3 are placed into memory starting at $02/1000.
Multi-Bank increments the bank number again and
the process repeats until the max_bank value is
reached. Because this sequence of commands incre
ments the bank number first , you need to start with a
bank value of one less than the first bank you want to
affect.

To summarize the rules for using Multi-Bank:

V 1. It must be located at $0/300, unless it is "ORGed"
and assembled to execute at a different address.

V 2. The value of max_bank should be set to either the
highestbanknumber+ 1 ofthemachine, ortothevalue
of the highest bank+ 1 that you wish to operate on. as
appropriate.

V 3. Max_bank is encoded as a pair of ASCII digits with
their high bits set. Valid values range from "0" through
"9" ($BO to $B9) and "A" through "F" ($C 1 to $C6).

V 4. There must be at least one blank following the
command to set $00/0034.

V 5. The firstpass flag should be zero. If a previous
command terminated prematurely. either by hitting
reset or by failing to include a space after the command
"34:x". you will have to zero the flag or reload a fresh
copy of Multi-Bank.

v 6. The registers should be set to 8 bit width. The value
of the m and x flags should be 1.

V 7. Multi-Bank expects to find the"<" character in the
first $40 bytes of the input buffer, followed by a 2 byte

bank specification.

While Multi-Bank may not revolutionize your devel
opment work, it should prove itself useful if you need
its ability.

Program Listing:

* Monitor Command Multi-Bank Looper
* by James A. Hodge - 9/19/89
* Assembler: Merlin 8/16
* Copyright (c) 1990 Ariel Publishing
* and James Hodge - some rights reserved

tr adr
org $300

lda frstpass ;first pass flag
bne do it ;do fndbnk 1st

;pass only
inc frstpass ;set flag
lda #2
sta $9
stz $8 ;point 8.9 at kbd buff

findbank inc
lda
cmp
beq
lda

do it

cmp
bne

inc

ldy
lda
inc
cmp

bee
bne
lda
bra

nextchar cmp
bee
lda
inc
sta
lda

$8 ;increment pointer
$8 ;check it
#$40
so_long;quit after X bytes
($8) ;locate 2 byt

;bank# that
#"<" ;after "<" symbol
findbank ;if not "<"

;continue
$8 ;leave this -> to bank#

#1
($8), y

;inc low byte of bank#
#"9"+1 ;valid values =

;0-9, A-F
o k ;if val = 0 to 9
next char

0 k
#"F"+l
0 k

($8)

($8)
#"0"

;if val = A to F
;else
; inc high byte

set lo byte to "0"

0 k sta ($8), y ;now bank#'s inc'd
cmp max bank+l;chk lo byt

;of max_bank
bee go_ on
lda ($8) ;check hi byte
cmp max bank ;if bank# >=

then quit
bcs so_long

on go - rts

so - long stz frstpass ; 0 flag for reuse
ldy $34 ;get cmnd line index
lda #$8D ;carriage return char
sta $20l,y ;terminate cmd line
rts

max bank asc "18"
frstpass hex 00

Ml.croDot just$ 29.95
plus $2.50 S&H

::·:::::-:::_:-::::::::::::::::·:::::::::::::j::::::::::::::::::::;::;:::·:-::::::::::::::::::::::::::::;::::::::::::::::::::

~he 199iRII
lllilll1~1~~' ii

BISJC::;r$"¥$1"1;1\n /

Just 2.5K in size, but more powerful than BASIC.SYSTEM.
Imagine doing BASIC overlays simply by specifying the file
name and the line number where you want to overlay. How
about loading an array of directory names at machine lan
guage speed. You get this and total control over ProDOS
that is impossible with BASIC.SYSTEM. Works with Pro
gram Writer ($42.45. Both for $59.95 + S&H). Love it or get
your money back! Inexpensive publishers' licenses.

- Oealerlnqumeslnvned

Kitchen Sink Software, Inc
903 Knebworth Ct. Dept. 8
Westerville, OH 43081
(614) 891-2111

Checking Out the Locals

by Ross W. Lambert

You Z-fans out there got a little bit short-changed
last month; I had to cut an article due to lack of
space. I ended up axing my own contribution. I
thought I'd counter that this month by providing you
with an extra dose of Z-Power. We're going to cover
two separate topics; hang on to your hats. Those of
you who are not really into ZBasic may want to read
along anyway because I dip into compiler construc
tion just a tad. You might (shudder) leam something.

Part I : FN Local and FN Global

Those of you who read these articles closely probably
noticed that I promised local variables for ZBasic in
a "teaser" at the end of my June column. From the
sounds of things, nobody really believed me.

0 ye of little faith .

is long gone, of course (i.e. switched out). but you can
still get at the system monitor in the highest reaches
of ROM.

Inside the monitor ROMS there lives a little memory
move routine. It hides discreetly at location $FE2C.
The only caveats for using this bugger are that it will
not copy data between banks (main and aux) and
your source block cannot overlap to the right (i.e. to
the high memory side) of the destination block (see
Figure 2). Neither caveat is an issue for our current
purposes. We only intend to move memory in main
memory, and our source variable data and the data

buffer are in sepa

No, I didn't rewrite the
language or even patch it.
Rather, I created a little
function that takes ad
vantage of the way ZBasic
organizes data in mem-

''You can access the Apple
monitor from within a running
ZBasic program."

rate, discrete blocks
of memory.

Speaking of blocks:
that brings us to the
costs of FN Local.

Oiy. In a nutshell, I stash
the variables you want "localized" into a buffer.
When you want their values restored, I move them
from the buffer back into the correct spots in mem
ory.

Easy stuff. And it was made even easier by a fact that
may surprise a few of you; you can access the Apple
II monitor from a running ZBasic program. Apple soft

There ain't no free lunch

Here's a mini-lesson on compilers ... in other times
and places (and CPUs) compilers create what is
called a "stack frame" whenever they encounter a
function, subprogram, etc. A stack frame is simply
a little section of memory on the stack (c.f. my June

'90 column) that belongs to the function being called.
The first thing a compiler usually does when creating
function code is to save the current address of the
stack pointer. The function is then allowed to keep
its variables on the stack, and then when the func
tion is all done it just resets the stack pointer to its
old value. The function's old local variables just float
away.

When I first attacked the question oflocal variables,
I'm sure that I had to grapple with the same issues
the ZBasic authors did. On most microcomputers,
and especially eight bit Apple lis, stack space is at a
premium. We've only got 256 bytes, and most ofthat
will already be spoken for by the time one of our
functions steps up to bat.

Some compilers have opted to create what is often
called a "pseudo-stack". This section of memory
behaves like the normal system stack, but the CPU
itself does not manage it or have instructions to
access it directly. A pseudo-stack is merely a Last In
First Out data structure managed by the language,
not the CPU. They are just like the LIFO structures
I mentioned in my June '90 column.

One problem with pseudo-stacks is that they tend to
be slow. Another problem is that they take up
memory, and usually a lot of it. ZBasic does indeed
have a pseudo-stack for its various intemal
operations, but it is relatively small because it
doesn't mess with local variables.

This is all a long winded excuse for not creating a FN
Local that pushes your local variables on the stack.
Chances are you'd get a ?STACK OVERFLOW error
or trash the system so often it'd be more trouble than
it is worth.

The simplest way to provide some of the functionality
oflocal variables without hardly any hassles at all is
to ask you to plan ahead. Thus FN Local comes at
two main costs, organization and memory.

The organization cost involved stems from the fact
that the range of variables you'd like localized must
be contiguous in memory. In order to make them
contiguous, you have to dimension them in order.
For example,

DIM IntOne, IntTwo, ArrayOne (999), IntThree
DIM 100 MyString$, IntFour

... creates a block of memory 2108 bytes long. Each
integer variable is two bytes long (for a total of eight
bytes). the string is defined to be 100 bytes, and a
1000 element integer array at 2 bytes per element is
2000 more bytes. If I added correctly, we get 2108 .

You could, using FN Local, save this entire block of
memory, pollute each and every one of the variables ,
and then restore them all in one fell swoop with FN
Global.

Neat, huh?

Well, yes, except that there is one more cost: RAM.
Since I have elected not to push the variables to be
localized onto the stack, you must provide some
RAM for temporary storage. Since every program
(and indeed, every programmer) is different, I de
cided not to mandate a buffer size or location. That
is up to you. Fortunately, there are several potential
locations that may be useful depending on the type
of program you are writing:

0 One obvious option is to create your buffer in the
standard ZBasic data space (in main mem). This is
what I chose to do in the demo code, DIMensioning
a LocalBuffer(10) array. This storage option works
best when you don't have tons of variables to localize
or you have lots of data storage space available.

0 Another option is to use the high resolution graph
ics page. This whopping 8K block ($2000-$3999) is
unused by text based ZBasic programs.

0 There is also the page three free space (200 bytes
starting at 768).

0 Finally, you could find the start of your block with
V ARPTR, save it to a temporary file on a disk or
RAMdisk with the BSAVE function (on the ZBasic
distribution disk). and then restore the entire thing
with FN BLOAD. This would. in fact, create some
thing a little bit akin to virtual memory. It's really a
neat trick for super memory intensive applications.

Back to the BASICs

When a new variable is DIMensioned or defined in
ZBasic, the variable storage pointer is moved lower
in memory by the appropriate amount (c.f. Figure 1).

Figure 1: ZBasic Variable Memory Use

top of variable bytes 0-1 DIM IntOne

space
es 2-3 DIM lntTwo,

($A7CO in the 128K
ProDOS version)

DIM ArrayOne (999)

bytes 4-2003

bytes 2004-2005 DIM lntThree

bytes 2006-21 05 DIM 1 00 MyString$
variable
space
pointer bytes 2106-2107 DIM lntFour

...... ..
remaing RAM variable
space ...

This means that if the first four variables you define
are integers, you can find the beginning of the 8
byte block they occupy by getting the V .ARPTR of the
last variable defined. Like so:

DIM One, Two, Three, Four
BlockStart = VARPTR(Four)

The same principle applies to all data types; inte
gers are just easier for demonstration purposes.
Consult your ZBasic manual for the lengths of
other data types (and don't forget to consult your
configuration screen for how many digits of preci
sion you've set for floating point vars).

Don't let arrays throw you off either. Although they
store their data internally lowest to highest in
memory (i.e. element one starts lower in memory
than element two). the start of the entire array is
lower than the variable declared or DIMmed imme
diately before it.

How to get it to do what it does

As I mentioned earlier, you two main concerns

when localizing variables are "what" (what variable
block to localize) and "where" (where to put it). Assum
ing you can answer both of those questions, the
syntax to the function looks like this:

REM saves bytes starting at Source
FN Local (Source,Bytes)

REM restore bytes that live at Source+
FN Global (Source,Bytes)

As you might guess, one important use of these
functions is inside other functions. For example,

LONG FN MyFN
FN Local(Source,Bytes)

... pollute all the variables living at
Source to Source+Bytes

FN Global (Source,Bytes)
END FN

This means that you can really make your functions
independent of one another and increase the liklihood
that you can use them in another program without
variable trashing.

Another approach, and the one I used in the demo, is
to call FN Local before calling a function and FN
Global after calling a function, thereby restoring any
variables that may have been trashed during the
passing of parameters. Like so:

FN Local(Source,Bytes)
X = MyFN (Whatever)
FN Global (Source,Bytes)

Digging into the Demo

You'll notice that the functions assume that the start
of the variable buffer can be found at LocalBuffer.

You assembly hacks will also note that I set theY
register of the CPU to zero before the jump to $FE2C.
This is necessary because Yis used as an offset for the
indexed indirect addressing loop that lives in the
monitor memory mover. And I "bounced off' the RrS
in ROM, saving a byte (I'm cheap), hence the JMP
instruction in the MACHLG statements and not a
JSR.

The LONG FN MoveMem does most of the work; FN
Local and FN Global switch the parameters around
for you so that it is all a little less taxing on the ol'
noggin.

Improvements

Now that I've pretty much finished the code and run
up against our publication deadline (earlier this
month than normal due to KCFest). I've thought of
some really wonderful additions ...

As the functions stand right now, they don't manage
the buffer memory for you at all. They always stash
the data to be saved at the begnning of the buffer,
memory location LocalBuffer. A better solution
would allow you to stash as many sets of data as
would fit into the buffer. This would involve keeping
track of what was where, but that could be easily
handled with a BuffPtr(x) array. For the block of data
you number as X, look up its position in the buffer by
reading BuffPtr(X).

Another approach would be to treat the data buffer as
a pseudo stack. Each time you "push" a group of

values onto the stack, you increment the "stack
pointer" by the size of the block. To get the values
back, just "pull" the values off the stack and down
into the right location in memory.

Hopefully this code will inspire you to do something
truly outstanding, or at least make your life a little
easier.

Listing 1: FN Local and FN Global

REM =================================
REM FN Local and FN Global
REM
REM by Ross W. Lambert
REM Copyright (C) 1990
REM Ariel Publishing, Inc .
REM Most Rights Reserved
REM
REM I assume that the default
REM var type is integer
REM =================================

DIM Xtop,Ytop , Xbot,Ybot : REM demo data

DIM LocalBuffer(lO): REM temp buffer

ML = 768
LocalBuffer = VARPTR(LocalBuffer(O))

LONG FN MoveMem (Source,Dest,Amount)
Zl PEEK WORD (60) : REM save zpg
Z2 PEEK WORD (62)
Z3 PEEK WORD (66)

POKE WORD 60 , Source : REM poke addrs
POKE WORD 62 , Source+Amount
POKE WORD 66,Dest

REM This ML routine could be
REM deposited at startup and
REM then just CALLed as long as
REM it was not overwritten by
REM anything else.

REM ldy #0
POKE ML,l60:POKE ML+l,O
REM jmp $FE2C
POKE ML+2,76 :POKE ML+3,44
POKE ML+4,254

CALL ML

POKE WORD 60,Zl REM restore zero pg
POKE WORD 62,Z2
POKE WORD 66,Z3

END FN

DEF FN Local (Source,Bytes) = FN MoveMem
(Source,LocalBuffer,Bytes)

DEF FN Global(Source,Bytes) = FN MoveMem
(LocalBuffer,Source,Bytes)

REM
REM
REM

X top
Xbot

Main

10 Ytop
30 Ybot

20
40

MODE 7 : REM double high res graphics
CLS
PRINT Xtop,Ytop,Xbot,Ybot:REM before ...
FN Local(VARPTR(Ybot),8) : REM save data
Xtop = 50 : Ytop = 100 : REM pollute it
Xbot = 90 : Ybot = 170
BOX Xtop,Ytop TO Xbot,Ybot
FN Global(VARPTR(Ybot),8) :REM restore it
PRINT Xtop,Ytop,Xbot,Ybot :REM after .. .
INPUT R$

MODE 2
END

Part II: Playing with ProDOS

The remainder of this article was inspired by long
time, loyal subscriber Jim Shug of Midwest Agri
Business Services. Ol' Jim called me when he
noticed that even though he had deleted several large
chunks out of a text file one of his programs was
maintaining, the actual file size reported in the
directory was not getting any smaller.

This occurs because ProD OS cannot really make any
assumptions when you don't write up to or past the
end of the file. Unlike MS-DOS, ProDOS does not
have an end of file "character". Instead, it maintains
the file length as part of the information that travels

with the file. There is therefore no writing an EOF
character to the middle of the file and getting ProD OS
to adjust automatically.
That is one of the very few advantages to MS-DOS. I
can tell you. And even that advantage is occassion
ally troublesome. If an EOF gets written mid-file by
accident (perhaps an embedded control-character in
a file or something) all of the data past the character
boils off into the vacuum of space.

There are two solutions to the EOF problem for
ProDOS 8.

The first is to avoid the situation altogether ala'
AppleWorks™. AppleWorks creates a temporary
copy of the file to be saved and then goes back and
deletes the original. After that it renames the tempo
rary with the same name as the original.

The problem with this solution is that your users will
run out of disk space long before their disks are
actually full. If you're working with floppies, as soon
as the original AND the temporary file exceed the
disk size, you have a problem. AppleWorks 3.0+
solved this by asking users if it could delete the
original to get more space. Although the technique
works, deleting the original tends to scare the heck
out of the non-hacker crowd.

Another solution is the one we'll take here: explicitly
set the file length yourself by doing a call to the
ProDOS Machine Language Interface. As you'll see,
it doesn't really require any knowledge of machine
language. And in the process we'll discover a fun
little tidbit about mixing Z and MLI calls.

The Tidbit (or TidByte)

Whenever you open a file under ProD OS 8. the DOS
assigns a reference number to the open file. This way
it can refer to open files by number and not have to
dink around with pathnames all the time. This is
true whether you open the file with ZBasic's OPEN or
do it via assembly language.

To muddy the waters some, the file number that we
assign to an open file in ZBasic is most definitely not
the same as the ProDOS reference number. The
ZBasic file number is really for our bookkeeping
purposes. ProDOS retums a reference number to
ZBasic, but ZBasic does not pass it on to us. At least

Figure 1 :Resetting the End of File Pointer to
Reflect Deleted Data

byte 0

byte 99

byte 0

Myfile: 10 items at 10 bytes
each. EOF = 100 bytes EOF still = 100

Item 1
Item 2
Item 3
Item 4
Item 5
Item 6
Item 7
Item 8
Item 9
Item 10

Item 1
Item 2
Item 3
Item 4
Item 6
Item 7
ItemS
Item 9
Item 10

Now delete Item 1

item number 5, Item 2

pulling up all Item 3
the others that Item 4
follow. Item 6

~
Item 7
Item 8
Item 9
Item 10
Item 10

Unless you reset the EOF pointer yourself in this
instance, ProDOS has no way of knowing where you
really want the end of the file to be. Hence you'll end up
with two Item 1 O's (the rewritten one and the old one)

By resetting the EOF with FN
SetEOF, you can rewrite an
existing file and really make it
shorter.

FN SetEOF(MyFile,90)

byte 89

not directly.

byte 0

byte 99

I must confess that, up until now, whenever I wanted
to get the P8 file reference number, I did what
everybody else did and wrote a special call to the MLI
to OPEN the file and grab the refnum.

All we must do is a simple PEEK to the proper spot
in the parameter table immediately following the
standard ZBasic OPEN statement.

Alas, how could I have been so blind? An OPEN call
is an OPEN call is an OPEN call. When ZBasic opens
a file, it is doing the exact same things we are when
we code it ourselves. And since the ProDOS ZBasic
author, Greg Branche, was so generous with infor
mation, we know exactly where ZBasic's own MLI
parameter table lives ($1FOO).

Voile' (saywa-lah'} . We have a refnum. A function to
do this doesn't even require the LONG variety:

REM Thi s f unction on l y works if
REM called immediate l y following a
REM ZBasic OP EN command.

DEF FN GetRe f = PEEK(&l F0 5)

The n ext step involved in messing with the EOF
marker is to find out its current status . As I've
discussed before, there are two approach es, one is
all-ZBasic and one is more fun.

The all-ZBasic method is to open the file with a record
length of 1 byte and then ask how many records there
are with an LOF(#) command. It would look like this:

bytes, and makes the entire file 500 bytes long.

Hope this fills your needs J im, and I h ope the rest of
you get some u se out of it, too .

Listing 2: FN SetEOF and brethren

OPEN "O",# l,File$, 1 : REM r e cord length of 1 byte
Len ! = LOF (1) REM how many records we got? REM ===========================

REM FN SetEOF , FN GetEOF ,

The only trick here is to remember that ProDOS
supports file sizes larger than can represented in an
integer variable.

A more entertaining approach is to go straight to the
MLI. FN GetEOF in the demo below does just that.
The only reason it is more entertaining is another
little t idbyte: most folks don't know it, but you can
save a little time and a little variable space by putting
the expression that creates your function's retum
value r ight in the END FN = statement. END FN will
figure it all outjes' fine, thank you .

The real meat of the demo (if there is any) is to be
found in FN SetEOF. This function takes the file ref
num as a parameter, as well as the new desired
length of the file. Caveat Emptor here, boys an d girls
(that's Latin for "Hold on to your wallet.") Like the
potential boo-boos under MS-DOS, if you set th e file
length shorter than you m ean to, your data will hiss
away into the electronic nothingness.

FN SetEOF divides NewLen! by 1511.3 (4096) because
ProDOS file sizes must be represented by three bytes.
The highest -order byte is the number of groups
4096's (like the number of lO's in 100 or something) .
That's why I indicated this with 1511.3 and not 4096.
That makes a little sense, doesn't it? You divide by
either representation of the number. It's not a time
critical operation.

There is one last point of interest in the demo. The
main program writes 100 four byte strings to disk
("0123") . I couldn't figure out for the life of me why
the file length kept showing up as 500 bytes!

The answer is that the PRINT# statement sends
output to disk exactly like PRINT does to the screen.
In short, there is a carriage retum delimeter after
each and every string. This fills out each group to five

REM
REM by Ross W. Lambert
REM Copyright (C) 1990
REM Ariel Publishing , Inc .
REM Most Rights Reserved
REM
REM I assume that the de f ault
REM var type is intege r
REM ===========================

DIM 65 Path$: REM max len plus len byte

REM Ref is reference numbe r of open file

REM This function only wo rks if c a lled
REM i mmediately follo wing a ZBas i c OPEN
REM c ommand

DEF FN GetRef PEEK (&1F05)

LONG FN GetEOF ! (Ref)
POKE &1F00 , 2 : REM
POKE &1F01,Ref : REM

two parms
ProDOS ref number

REM do GET EOF call
MACHLG &A9 , &D1 , &20 , &0865

REM put expression in END stateme nt

END FN=PEEK WORD (&1F02)+P EEK(&1F04)*
1 6 . 0 " 3

LONG FN SetEOF (Ref , NewLen!)
POKE &1F00 , 2 : REM t wo parms
POKE &1F01 , Ref : REM P r oDOS re f n umber
Temp = NewLen ! /(16"3)
POKE &1F04 , Temp : REM poke into p arm tbl
REM subtract to g e t remainder

Temp = NewLen!-Temp
REM poke word length remainder
POKE WORD &1F02 ,Temp
REM do SET EOF call
MACHLG &A9, &DO, &20, &0865

END FN = ERROR

REM ------------------
REM Main
REM ------------------

MODE 2

REM Create a dummy file at the
current prefix

KILL "DUMMY"
IF ERROR <> 0 THEN ERROR 0
OPEN "0",1,"DUMMY"
IF ERROR <> 0 THEN STOP
Ref = FN GetRef : REM get ProDOS

internal reference #

FOR X = 0 TO 99
PRINT #1,"0123"

riage return here!
NEXT

REM implicit car-

PRINT "The current file length is : " ; FN
GetEOF! (Ref);" bytes"

CLOSE

REM Go write some bytes in the middle

OPEN "0",1,"DUMMY",1 : REM record len=1
IF ERROR <> 0 THEN STOP
Ref = FN GetRef
RECORD#1,20:REM
PRINT#1,"56789"

write bytes 20-24

FN SetEOF(Ref,25) :REM set new length
PRINT "The new length is: ";FN

GetEOF! (Ref)
CLOSE

END

Applesoft™ Never
Looked So Good!
The Call Box TPS™ (Toolbox Programming System)
gives you the tools to look and sound your best. Make your
own Applesoft BASIC desktop applications which look and
sound like professional programs.

Over 1000 toolbox calls have been added to Applesoft BASIC
which gives you, the BASIC programmer instant access to the
Apple Ilgs toolbox in a simple and flexible way. You can use
the Memory Manager, Miscellaneous Tools, Tool Locator,
Quickdraw II, Desk Manager, Event Manager, Scheduler,
Sound Manager, Desktop Bus, Text Tools, Window
Manager, Menu Manager, Control Manager, Quickdraw II
(aux.), Line Edit, Dialog Manager, Scrap Manager, Note
Synthesizer, Note Sequencer, A.C.E., Standard File and
much more. In addition to all the tool calls you have access to
ProDOS 16 and GS/OS commands at the same time that you
have access to Pro DOS 8 commands. You can even load and
run relocatable shell applications from within the Call Box
BASIC environment.

The Call Box TPS includes the BASIC interface, WYSIWYG
Window, Dialog, Menu and Image editors, Disk and system
utilities plus demos and tutorials. The Call Box TPS comes on
3 - 3.5"disks with a 140+ page hard cover ring binder
manual. Requires 1 megabyte min. and GS/OS V5.0.2 min.
Call Box is supported by a programmers association which
provides its members with disks and documentation designed
to educate as well as illuminate.

The Call Box TPS $99.00

® So What Software·

10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708

(714) 964-4298 VISA/Mastercard accepted

665 West Jackson Street, Woodstock, IL 60098
Mon-Frl, 9-6 CST (800) 869-9152 (815) 338-8685 Sat 12-5 CST

Memory
GS-4 Memory Board
Ok $49 1 Meg $99
2 Meg $166 4 Meg $289

Chinook RAM 4000
Ok $75 1 Meg $139
2 Meg $199 4 Meg $319

GS-Sauce SIMM Board
Ok $89 1 Meg $161
2 Meg $230 4 Meg $369

GS Ram+
1 Meg $212
3 Meg $344
5 Meg $475

2 Meg
4 Meg
6 Meg

$279
$411
$535

Checkmate MemorySaver $119

A 11 memory is new and has a
S year warranty.

Apple 1 Meg SOns exp. set $67
SIMM expansion set $69
Apple 256k 120ns exp. set $18
Apple 256k X 4 exp. set $19

Accesories for GS
Transwarp GS 7 Mhz $279
Sonic Blaster $96
VisionaryGS Digitizer $279
RamFast 256k DMA SCSI $197
Sound System II speakers $99
System Saver GS $69
Conserver GS $89
A+ Optical Mouse ADB $87
Cordless Mouse ADB $109

GS Hardware
,. Apple IIGS ROM 01 CPU $649
Apple IIGS 1 Meg CPU,
keyboard and mouse $819
Apple Color RGB Monitor $447
Apple IW II w /32k buffer $449
Magnavox RGB Monitor $319
Fortris ImageWriter
compatible printer $229
HP DeskJet+ 300 DPI! $599
.tE 3.5" Drive upgradable
from 800k to1.44Meg $219
AMR 3.5" Drive $183
AMR 5.25" Drive $149

Software
Utilities

Copy II Plus v. 9.0 $25
Print Shop GS $27
ProSel 8/16 $66
Programmers's Online
Companion $37.50

Vitesse Salvation Series:
Guardian- HD Backup $29
Renaissance- Optimizer $29
Exorciser- Virus Detector $26

Graphic Disk Labeler v.2.0
Print Color Disk Labels on

IW II in 320 and 640 modes!
$24.50

Business
AppleWorks GS $212
Manzanita Businessworks $294

Education
Designasaurus GS $33
Geometry GS $56
Talking Once Upon a Time $34
StudyMate- Grade Booster $33

GS Numerics
A complete math program for
high school, college students

and professionals
$104

(Zip GS 8 Mhz $269)

Entertainment
FutureShock v.2.0 $54
Heatwave Offshore Racing$37
Test Drive II: The Duel $34
Grand Prix Circuit $36
Blue Angels Flight Sim. $37
Third Courier $37
Jam Session $32.25
Task Force $29
California Games $14 . 50
Qix $25
Rastan $25
Arkanoid I or II $25
Chessmaster 2100 $37
Tunnels of Armageddon $32

GS Starter System
• Apple IIGS 1 Meg CPU,

keyboard and mouse
• Magnavox RGB Monitor
• Fortris ImageWriter

compatible printer
• AMR 3.5" Drive
• Mouse pad
• Box of 10 Maxell 3.5" Disks

$1599

GS Power System
• Apple Ilgs 1 Meg CPU,

keyboard and mouse
• Apple Color RGB Monitor
• Apple ImageWriter II with

32k buffer
• Apple High Speed DMA SCSI
• AMR 40 Meg GS Partener HD
• Chinook RAM 4000 w I 2 Meg
• AMR 3.5" Drive
• Mouse pad
• Box of 10 Maxell 3.5" Disks

$2959

Modems
USR 14.4 kbs Courier
Cardinal 2400 baud
Supra 2400 baud
Prometheus Promodem
internal 2400G

HST$589
$109
$109

$144

Hard Drives
Chinook CTlOO 16k cache $780
UniStore 80 Meg HS HD $529
UniStore 60 Meg HS HD $474
AMR GS Partner (0 Footprint)
40 Meg $420 60 Meg $640
80 Meg $700 100 Meg $876
AMR 45 Removable HD $769
CMS 60 Meg HD $539
Apple DMA SCSI w/ purchase
of HD: $96 Without: $101
All HDs come formatted w/ GSOS or
Mac system software, and 5-10 megs of
PD, Share/Freeware,NDAs, CDAs, and
!NITs.

(Inner Express $85)

Prices subject to change without notice. Returns
within 15 days with no restocking fee. IL residents
add 6.5%. FAX orders and receive 2nd day air
upgrade! (815) 338-8597

Programming the Extended Keyboard

Getting Over Extended
By Dr. Doni G. Grande

Many of us lead a dark, dual existence. By day, we
are tied to some three-letter computer at work,
slaving away at a keyboard with multiple function
keys, and by night we are released and able to soar
with our fantastic Ilgs's, with their less-endowed
keyboards. But the curse of this lifestyle is that we
are forever having to releam the keyboard layout
when we switch between machines.

This is where an extended keyboard comes to the
rescue. The key layout on the Apple extended key
board is very similar to the "enhanced keyboard"
many of us use on those other computers. There are
fifteen function keys (called F-keys and labeled F1-
F15) across the top of the keyboard. The cursor
movement keys (in an inverted-T configuration) and
an editing keypad (with keys labeled help, home,
page up, delete, end, and page down) are located
between the main alphanumeric keys and the
numeric keypad. There are even three lights (num
lock, caps lock, and scroll lock) located above the
keypad.

Where'd it go, George, where did it go?

How do you know when those extra keys are
pressed?Well, the extra keys act like they are on a big
extended keypad. Table 1 lists the key equivalents
for these keys. In case you are wondering where the
"keypad bit" is located, its kept in the key modifier
register located at $EO/C025 (or PEEK(49189) from
Applesoft) as shown in Table 2.

Listing 1 is a short Applesoft program that GETs a
keyboard character and the key modifier register
and prints which keys were hit. The key modifier
register (read into KEYMOD) is parsed by checking
for the higher bits first. If set, the appropriate modi
fier is added to the description string and the bit is

subtracted from KEYMOD. This is continued until
no bits are left set in KEYMOD, and then the string
is printed out. Note that control characters are
printed with a caret preceding the letter; thus,
control-E prints as "E. It is interesting to notice that
some keys retum control characters (RETURN, ESC,
TAB, and the arrow keys) without setting the CTRL
bit since control is not actually held down to gener
ate these characters (but the keyboard WILL cor
rectly report CTRL "M if you hold down CONTROL
and hit RETURN, as well as KP "M if you press
ENTER on the keypad!).

Unfortunately, most Apple IIgs programs don't
check for the keypad bit, so they just appear to
retum the characters in Table 1 (F 1 gives you a "z",
F2 an "x", etc.). This isn't very useful. Perhaps as
more people get the extended keyboard, more pro
grams will be adapted to them.

" ... a Permanent Initialization File
(PIF) can be written that will be
installed when the Ilgs boots and
will set the keyboard lights when
any desired modifier keys are
down."

UltraExtended

Some programs can be made to recognize the func
tion keys, however. For example, Beagle Bros' Time
Out UltraMacros 3.0 will accept extended keyboard
keys to trigger macros, so you can setup the function

keys in AppleWorks. The only problem with this
approach is that each key is mapped into its equiva
lent solid-Apple (SA) key sequence. and most of the
predefined UltraMacros already use the Fkey
equivalents. For example, HOME maps into SA-s.
which is already used for the "Save File and Remove"
macro. After discussing this on the Beagle Bros
Support BBS, Mark Munz sent me a patch that
would let the F-keys map into the Both-Apple (BA)
macros. which are much less used. This patch and
the standard set of macros I use are in listing 2.
(Editor: Please note that our beta tester had trouble
with the UltraMacros part of this presentation. I
elected to print them anyway due to the very broad
interest in the subject. Caveat Emptor.)

Turnin' on the lights

Finally. there's the three lights on the keyboard:
NUMLOCK, CAPS LOCK, and SCROLL LOCK? It
seems that Apple thought about how to handle them.
albeit in hindsight. The ROM 3 machines will follow
the status of the CAPS LOCK key with the CAPS
LOCK light, but the earlier ROM 0 and ROM l
machines don't. Let's remedy that!

Figuring out exactly what to do takes a little bit of
digging. The Apple IIGS Toolbox Reference Volume

Table 1

One documents the Apple Desktop Bus toolset.
There is a Sendinfo routine documented to send data
to ADB devices, on pages 3-19 through 3-22. How
ever. how this relates to the extended keyboard is not
documented. By disassembling a program by Tracy
Valleau that set the CAPS LOCK light and a little
playing around with some values. the following
parameter list was discovered:

ADB Sendlnfo parameters to set keyboard lights:

2 byte count for ADB call
4 byte pointer to ADB data
2 byte $00A2 - send two bytes to

ADB device 2, register 1

The ADB data should be of the form (in binary):

1111 1xyz 1111 1111

where x = 1 for numlock off,O for on
y 1 for capslock off,O for on
z = 1 for scroll lock off,O for on

Knowing this, a Permanent Initialization File (PIF)
can be written that will be installed when the IIgs
boots and will set the keyboard lights when any
desired modifier keys are down. The PIF source is
shown in listing 3, with the "make" file in listing 4.

m x.,
>%

Extended Keyboard Function Key Equivalents
:-;-;;

~l
All va l ues are returned with the keypad bit set. =t

m

Fl F2 F3 F4 FS F6 F7 F8 F9 FlO Fl 1 F12 F13 F 14 F15
8
~;;>. w;

z X c v ' a b d e m g 0 i k q ¥: w
®. "=· =~:.:

f.
page+ l

help home up del end down

r s t u w y
i.

~~~- =»~·. :-. ~ ..... ... 
" . . . .. . .. 

" . . .. . .. >§;f&::W?:"M .~ 



Table 2 
Modifier Key Register at $EOC025 

bit number 

shift key 
1------ contra 1 key 

caps 1 ock key 
•------- repeat function 

~---------keypad key 
1------ updated modifier key 1atch 

L.....------- op.tion key Cso 1id app1e ) 
L--------------open app 1 e key 

This PIFis the one originally written by Tracy Valleau 
modified to allow any ofthe keyboard lights to follow 
any of the modifier keys. As the code now stands, it 
merely follows the status of the CAPS LOCK key with 
the CAPS LOCK light. To change which modifier keys 
control which lights, change the constants at the end 
of the program to reflect your desires. For example. 
changing the constants to: 

numlight 
caplight 
scrlight 
allmods 

de i2'apple+option' 
de i2'capslock' 
de i2 'ctrldwn+keypad' 
de i1'apple+option+capslock+ 

ctrldwn+keypad' 

... would make the NUM LOCK light follow the status 
of either Apple key, the CAPS LOCK light follow the 
CAPS LOCK key, and the SCROLL LOCK light follow 
the CONTROL and KEYPAD keys. The allmods con
stant must contain all the modifiers you are inter
ested in; it makes the code quicker in deciding if 
anything needs to be done when a modifier key is 
down. (A desktop program that allows you to custom
ize the PIF is available on the 8 I 16 monthly disk. -ed) 

Listing 1 
Applesoft Modifier Key Register Display 

5 REM Program to show use of Modifier 
Key register ($C025) 

10 GET A$:A = ASC (A$): IF A< 32 THEN 
A$ = "A" + CHR$ (A + 64) : REM Convert 
control chars 

20 KEYMOD = PEEK (49189) : REM = $C025 
30 KM$ = "": IF KEYMOD > 127 THEN KEYMOD 

= KEYMOD - 128:KM$ = "OA" 
40 IF KEYMOD > 63 THEN KEYMOD KEYMOD 

- 64:KM$ = KM$ + "CA " 
50 IF KEYMOD > 31 THEN KEYMOD KEYMOD 

- 32 : KM$ = KM$ + "KEYMOD " 
60 IF KEYMOD > 15 THEN KEYMOD KEYMOD 

- 16 : KM$ = KM$ + "KP " 
70 IF KEYMOD > 7 THEN KEYMOD KEYMOD 

8:KM$ = KM$ + "RPT " 
80 IF KEYMOD > 3 THEN KEYMOD KEYMOD 

4 : KM$ = KM$ + "CAPSLOCK " 
90 IF KEYMOD > 1 THEN KEYMOD KEYMOD -

2:KM$ KM$ + "CTRL " 
100 IF KEYMOD > 0 THEN KM$ = KM$ + 



"SHIFT " 
110 PRINT "Key hit : ";KM$;A$ 
120 GOTO 10 

Listing 2 
Ultramacros Macro to Enable Extended Keyboard 
Fkeys 

(A reminder: some folks have no problem with these, 
others find that it locks up their computer or crashes 
it. This may be due to inteference with other INITs or 
the effects of cosmic rays. - editor) 

Here is a fix for the extended keyboard. All the 
function keys are tumed into ba- macros instead of 
sa- macros. Thanks to Mark Munz for these! 

Note: these patches use memory from $30E-318 . 
Anything that writes over this area will crash Apple
Works! The STARTUP macro appears to trash this 
memory, so you can't have th is patch automatically 
installed when AppleWorks boots. 

<ba-ctrl-e>:<all : A=782:poke A+0,32 : poke 
a+1 , 3 : poke a+2,181 : poke a+3,208 : 
poke a+4,3 : poke a+5,76 : poke a+6,13 : 
poke a+7,182 : poke a+8,76 : poke a+9,20 
: poke a+10,182 : pokeword 4503,$30E: msg 
'BA extended ke ys'>! 

<ba-ctrl-n> : <all:pokeword 4503,$B60D : msg 
' SA extended keys ' >! 

<ba-S> : <awp:oa-,>! Home key goes to be-

data to clipboard 
<ba-v>:<all: sa-u>! F4 - PASTE - copy 
from clipboard 

Listing 3 
LIGHTS PIF to Enable Extended Keyboard Lights 

LIGHTS V1 . 0 - 26 Jun 1990 

By Doni G. Grande 

A PIF that enables the lights on an 
extended keyboard . One or more of the 
modifier keys may be linked to any of 

the 
three lights (numlock, capslock, or 

scroll 
lock) . Use the CONFIG.LIGHTS program 

to 
configure which keys control the 

lights. 

Based on the MYLIGHTS program by Tracy 
Valleau. This driver was created from 
a disassembly of MYLIGHTS (made with 

;ORCA/Disassembler) which was modifie d to 
add support for lights and keys other 
than capslock. 

Copyright (c) 1990 Ariel Publishing and 
Doni G. Grande. Some rights reserved. 

Get our macros 

ginning of line. mcopy lights.mac 
<ba-w>:<awp:oa- . >! End goes to the end of 
line . 
<ba-t>:<awp:oa-up>! Page up goes up one 
page 
<ba-y> : <awp:oa-down>! Page down goes down 
one page 
<ba-r>: <all : oa- ? >! Help shows help screen 
<ba-u> : <all : oa-de l>! Deletes character 
under the cursor 

<ba-z> : <all:sa-u>! F1 - UNDO - Undo last 
delete - paste from clipboard 
<ba-x> : <all: oa-m>T! F2 - CUT - Move data 
to clipboard 
<ba-c>:<all: oa-c>T! F3 - COPY - Copy 

Predefined labels: 

OS KIND 
PRODOSB 

gequ 
gequ 

$E100BC 
$BF00 

PREFLAG gequ $BF9A 
INCBUSYFLG gequ $E10064 
DECBUSYFLG gequ $E10068 
KEYMODREG gequ $C025 
MTSptr gequ $00 

Define bits for modifier key register 



shiftdwn gequ $01 Shift key down 
ctrldwn gequ $02 Control key down 
caps lock gequ $04 Caps Lock key down 
anydown gequ $08 Some key is down 
keypad gequ $10 Keypad key down 
option gequ $40 Option key down 
apple gequ $80 Apple key down 

lights start 

Start w/some housekeeping 
Get direct page and start some tools 
we need 

phk 
p1lb 
rep #$30 
longa on 
longi on 
_TLStartUp 
ph a 
_MMStartUp 

· _MTStartUp 

Start To o l locator 

Start memory manager 
Start mise toolset 

We need a ptr in zero page, so preserve 
the original contents. 

lda 
ph a 
lda 
ph a 

MTSptr+2 

MTSptr 

save zero page 
locations 

Have to patch the Mise Toolset's reset 
rtn to reinstall our heartbeat task. 

pea $0000 
pea $0000 
pea $0000 
pea $0003 

GetTSPtr 

pla 
sta MTSptr 
pla 
sta MTSptr+2 

Reserve space 
for result 

Get system tool 
Want Mise Toolset 

Get ptr 

Move pointer to 
zero page 

;The reset routine is number $0014. Load 
;the original value and place in our code 
;so we can call when needed . Then patch 
;the Mise Toolset reset routine to point 
;to our routine. 

ldy #$0014 loword of addr-1 
lda [MTSptr] ,y of Mise Tool 

Reset 

inc a Point to addr of MTS 
sta oMTSrst MTS reset routine 
lda #ResetFix 
dec a 
sta [MTSptr], y 

ldy #$0016 Get hibyte addr-1 
sep #$20 of MTS reset 
long a off routine 
lda [MTSptr],y 
sta oMTSrsthi 
lda #"ResetFix 
sta [MTSptr], y 

Restore zero page to way we found it. 

rep #$20 
long a on 
pla Restore zero page 
sta MTSptr location 
pla 
sta $02 

Install our heartbeat routine 

jsl >InstHB 

Shutdown the tools we started 

MTShutDown 
MMShutDown 
TLShutDown 

rtl 

This is reset routine patch. The first 
instruction will be patched to point to 
original Mise Toolset reset rtn. After 
executing the original routine, kybd 
light heartbeat task is re-installed. 

ResetFix de 
oMTSrst de 
oMTSrsthi de 
InstHB pea 

pea 

h'22' 
h'OOOO' 

JSL opcode 
Orig Mise Toolset 

h'OO' Reset address 
HBtskptrl-$10 Install our 
HBtskptr heartbeat task 

SetHeartBeat 



pea $0002 
IntSource 

rt l 

Enable VBL ints 
(vb lEnable) 

Thi s is actual heartbeat task routine . 

HBtskptr de h ' OOOOOOOO' Heartbeat 
task header 
HBCount de i 2'$000A' Six inter-
rupts/sec 
HBSig de h'5AA5' Heartbeat 
signature 

php 
rep #$30 Switch to 

native mode 
long a on 
longi on 
phk 
plb 

Check to see if the current operating 
system is busy. If so, shorten the wait 
time to five ticks & return; otherwi se 
go check the keyboard modifiers. 

lda 
and 
bne 
lda 
and 
bne 
lda 
and 
cmp 
bne 
lda 
bmi 

do it jsl 
jsr 
jsl 

Wait Ten lda 
bra 

WaitFive lda 
SetHBC sta 

plp 
rtl 

>$E100FF 
#$00FF 
WaitFive 
>OS KIND 
#$00FF 
doit 
>PRODOS8 
#$00FF 
#$004C 
Wait Ten 
>PREFLAG 
WaitFive 

indicates current 
running 0/S 

prefix flag 

>INCBUSYFLG inc busy flag 
ChkCAPS 
>DECBUSYF LG dec busy flag 
#$000A 
SetHBC 
#$0005 
HBCount 

This rtn does all the work of checking 
the kbd modi fiers & setting the l i ghts . 

ChkCAPS sep #$30 
l onga off 

l ongi off 
lda >KEYMODREG Get key mod reg 
and allmods Strip bits we want 
sta CAP status Save current 
rep #$30 status 
l ong a on 
longi on 
lda CAP status Compare caps now 
eor PrevCAPS with previous . 
bne Not Equal Go if changed 
rts Otherwise return 

Not Equa l anop Update the lights 
stz ADBdata Zero ADB data byte 

lda CAP status Get light status 
sta PrevCAPS Save 4 nex t pass 
ph a 
and numlight Check numlight on 
beq nonum Go if not 
sec Roll bit into the 
rol ADBdata ADB data byte 

nonum pla Get light status 
ph a 
clc 
and caplight Check 

caps lock on 
beq no cap Go if not 
sec Roll bit into the 

no cap rol ADBdata ADB data byte 
pla 
clc 
and scr l ight Check scrol l lock 
beq noscr l Go if off 
sec Roll bit into the 

noscrl ro l ADBdata ADB data byte 

l da ADBdata Get ADB data val 
eor #$FFFF Invert all bits 

;Here is the rtn that does a ll the work . 
;It uses Sendinfo ADB Toolset call to set 
;the lights . Th i s is documented in the 
;Toolbox Reference Vo l 1, but the parm 
;used here is not mentioned.From what 
;we've been able to figure out, the 
;parameters are: 

2 byte count for ADB call 
4 byte pointer to ADB data 
2 byte $00A2 - send two bytes to ADB 

device 2 register 1 



The ADB data should be of the form 
(in binary) : 

1111 1xyz 1111 1111 

where x = 1 for numlock off , 0 for o n 
y = 1 for capslock off, 0 for on 

z = 1 for scroll lock off , 0 for on 

;Marker f o r data a rea . This is use d by 
; configure program (on 8 / 16 monthly d isk ) 
; to find the data a rea in the disk file . 

de c' data' 

The follo wing determines whic h l i ght s 
corre s pond to which ke ys. 

SendData anop Send data to kbd 
xba Swap hi/lo bytes numlight de i2 ' $0000 ' 
sta ADBdata Save in buffer caplight d e i2 ' capslock ' 
pea $0002 Send ADB two bytes scrlight de i2 '$ 0 000' 
lda ADBdataptr+2 Ptr to data allmods de i 1' caps l ock ' 

buffer All mod key s we 
ph a ; are intere sted in 
lda ADBdataptr e nd 
ph a 
pea $00 A2 Send to r e gister 

1 
Se ndinfo 

rts Listing 4 

ADBdata de 
ADBdat aptr de 
PrevCAPS de 
CAPstatus de 

i2 ' $0000 ' Data for ADB kbd 
a4 ' ADBdata ' Ptr to above 
i2 ' $0000 ' Previous CAPS stat 
i2 ' $0000 ' Present CAPS st a t 

Makefile for LIGHTS PIF 

asml lights . asm keep=light s 
erase lights . root 
filetype lights str 

tnlhiCO<il''''ll;..,.., ~~ your ~~J!• •••:; or~ tben·· ~ 1b11~ 1ne 
nd c~i~~!~i~!~~.Jt~M9~:::rcr~~t7!~;thly 

newsstands inltool(stca.,rl ,.e, .. s ev~rywhere. Wi,~re looking . 
forJop-notch llithunr.4!l(. We respqJ1d ,pro,nptly,)pay <, 
~~ICind gre, UUJ~~~~·~·· ·,~·~!j fol) ;:,· with! .. . ·.·.· .. • . . ·.· ...... ...... •. ·.·.· 

IU:::':IU!It:~ ~Ofhing! tou (Q::~r::. 
sottware PI~PJI~ihed and tQ(n cold, hard caSh. 

cnt·twnrlll to£· ,) . . ·.· ... · . 



New Concepts Software 

Dream Graph i x: A full feature paint program and more! 
• 16, 256, and 3200 color and palette control with ability to copy, spread, and swap colors and palettes 

• Draw filled or outlined circles, ovals, squares, rectangles, polygons, arcs, lines, and any other shapes 

• Mask color, spray paint, fill region (solid, pattern, and brush), freehand, zoom (with and without grid) 

• Use anything as a brush with ability to stretch, halve, double, rotate, flip, bend, shear and mirror 

• Smear, shade, blend, and smooth commands • Use all available fonts • Hard drive instalable 

• Load and save pictures on all avai lable and custom 3200 formats on the GS • Load and save palettes 

• User expandable through extended commands 

lnnerExpress: Speeds up Falcons, Inner and OverDrives 200%-300% 
lnnerDrive without lnnerExpress lnnerDrive with lnnerExpress 10 with lnnerExpress and TWGS 

Interleave: 
Block access/second : 

10:1 
81 

Interleave: 
Block access /second: 

6:1 
225 

Interleave: 
Block access/second : 

FutureShock V 2.0: Entertainment system with FuturePad controller 

5:1 
284 

FutureShock is a revolutionary game with its 
the game, you move your hand over the pad! 
olayed by two players through modem It comes with 

own interface controller- FuturePad. To manipulate the objects in 

Limited ~~Through September ll.1.h.;_ 

Free 2nd day shipping with any order! 

These games (DeathSquash, Zertotron Racer, and Metal Heads) can 
its own editor for making levels for the game' 

•oreamGraphix $42 Inner Express $95 Future Shock $59 

Dealer Inquires Welcomed New Concepts Software: 1-800-487-8684 



Generic StartUp 8 by Jerry Kindall 

Carl Hilton asked me on GEnie why the Sourceror's 
Apprentice had once run a generic GS/OS startup 
and shutdown routine, but never an 8-bit version of 
the same song and dance. It sounded like a good idea 
to me. It's not exactly crystal clear what one must do 
at the beginning of a ProDOS 8 SYS application. I 
took the front end I'd written for MicroDot and 
extended it to make it as generic as possible. The 
result was Listing 1. 

I designed the program so that it can be included 
easily in your assembly by using the Merlin PUT 
directive. Here's how a SYS application might start: 

*The world's greatest program 
* by Ima Bozo 

org 
typ 
dsk 

$2000 ;SYS files ORG @ $2000 
$FF ;SYS files type $FF 
GREATPROG ;assemble to disk 

writing the program was mainly a matter of looking 
through various manuals and figuring out what 
most SYS programs need to do, then writing the 
code. I've pointed out (in the comments) places 
where the routine can be modified to better suit your 
needs. 

The routine isn't particularly tricky, but I sure am 
glad I'll never have to worry about it again. I hope it 
saves you a headache or two. as well. Be on the 
lookout for a generic shutdown routine next month! 

Listing 1: The Generic 8-bit Startup Routine 

1 
2 

3 

4 
5 

* Generic 8- bit Startup Routine 
* by Jerry Kindall - 8/16 

lst off 

1 

2 
3 

4 
5 

6 
7 
8 put 

6 
generic ; include generic startup rtn 7 csw $36 ;output hook 

9 

10 *Program begins here . .. 

I tried to minimize the impact the Generic Startup 
Routine would have on your program's own labels. 
Many intemal labels are local labels, rather than 
global labels. The only global labels in the routine 
(besides the equates, some of which you may find 
useful anyway) are: 

strtpath: the startup path passed to this application 
by the launcher 

start: the starting address of the generic startup 
routine 

progpath: the program's complete pathname, or 
null if indeterminable 

main: the starting address of the program code you 
write 

I won't go into great detail describing the program's 
inner workings. It's well commented, and besides, 

8 

9 

10 
11 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

ksw 
resvec 
set txt 
home 
setnorm 
setkbd 
setvid 
coldst 

fretop 
memsiz 

GET INFO 
ONLINE 
SETPFX 
GETPFX 
CLOSE 

mli 
devnum 
bitmap 
level 
machid 

$38 ;input hook 
$3F2 ; reset vector 
$FB39 ;set text 
$FC58 ;clear screen 
$FE84 ;select norm vid 
$FE89 ;select IN#O 
$FE93 ; select PR#O 
$EOOO ;coldstart BASIC 

$6F ;beginning of strs 
$73 ; end of strings 

$C4 ;ProDOS MLI codes 
$C5 
$C6 
$C7 

$CC 

$BFOO ;ProDOS entry pt 
$BF30;last disk accessd 
$BF58;memory protection 

$BF94 ;file access level 
$BF98 ;machine id byte 



31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

pfxflag= $BF9A ; prefx active flag 

* Hardware & Firmware : 

kbd 
strobe 
pagel 
ent80 

fnl 
fn2 

$COOO ; read keypress 
$COlO ; clear keypress 
$C054 ; select page 1 
$C300 ; 80column entry pt 

$280 
$2CO 

;filename 1 
;filename 2 

82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 

: inittxt jsr 
jsr 
jsr 
jsr 
bit 
jsr 

setkbd 
setvid 

; IN#O 
;PR#O 

setnorm ;normal video 
settxt ;text mode 
pagel ;display page 1 
home ;clear screen 

* Get BASIC going If you will not be using 
* Applesoft BASIC routines, such as FP math, 
* you may leave out this section 

43 
44 

jmp start ; jmp over startup buffer 94 lda #:reentry ; this is our 

45 * Startup buffer 
46 * This code can be omitted if you 
47 * don't want the ability to pass a 
48 * string to your program . Otherwise 
49 * it's kind of nifty to have. 
50 hex EEEE41 ;startup buffer ID 
bytes 
51 
52 strtpath str 
for null 
53 
54 
55 ds 

' STARTUP' ; omit this line 

; startup path 

65-*+strtpath ;filler 
56 
57 * Close all open files and init stack 
pointer 
58 
59 start 
files 

lda 

sta 
jsr 
dfb 

#0 ;level set to 0 for all 

level 
mli 
CLOSE 

return ticket 
95 
96 
97 
98 
chars 
99 
100 
101 

sta 
lda 
sta 
lda 

sta 
lda 
sta 

102 jmp 
103 
104 : reentry lda 
105 
106 
107 
108 
109 
110 

sta 
sta 
lda 
sta 
sta 

ksw 
#/:reentry 
ksw+l 
# : nullout ;eat all output 

csw 
#/:nullout 
csw+l 
coldst ;coldstart Applesoft 

#$BF ; protect ProDOS global pg 
memsiz+l ;from BASIC strings 
fretop+l 
#0 
memsiz 
fretop 

111 * Set memory protection 
112 * Clears out ProDOS bitmap & rese r ves pages 
113 * 0 , 1,4-7, $BF. Add othe r protection here if 
114 * necessary. 
115 

60 
61 
62 
63 
64 

dw 
ldx 

: pclose 116 
#$FF ;stack pointer should 117 

lda 
ldx 

#0 
#$17 

be set to 
65 
66 

txs ; top of stack page 

67*Check for and deactivate 80-columns 
68*If you want instead to activate 80columns if 
69*available, use lda #$19 instead of lda #$15 . 
70*You could require 80 columns by branching to 
71*error handling routine instead of :inittxt. 
72 
73 
74 
75 
installed 
76 
77 
78 

lda 
and 
beq 

lda 
jsr 

79*Set up display 

machid 
#$02 
: inittxt 

#$15 
ent80 

; get machine id 
;check bit 1 
;no 80-col card 

; turn it off 
;$C300 entry 

80*This is executed on re-entry from Applesoft 
81*(when Applesoft calls RDKEY to get keypress) 

118 : memloop sta 
119 dex 
120 
121 
122 
123 
124 
125 

bne 
lda 
sta 
lda 
sta 

bitmap,x ;all mem accessible 

: memloop 
#%11001111 ;except 0,1,4-7 
bitmap 
#%00000001 ;$BF 
bitmap+$17 

126 * Avoid null prefix 
127 * If null prefix found, 
128 * volume last accessed . 

set prefix to name of 

129 
130 : prefix lda 
131 
132 
133 
134 
135 
136 

bne 
lda 
sta 
jsr 
dfb 
dw 

pfxflag 
:getpath ; not null 
devnum ;get current disk 
:ponline+l 
mli 
ONLINE 
:ponline 



fn1+1 
Jt$0F 

*' /' 
fn1+1 

;if length zero 

;put beg slash 

193 * This code makes program restart if Reset 
194 * is pressed. Probably you n eed to change 
195 * where program goes when Reset is pressed . 
196 
197 :reset 
198 

137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 

lda 
and 
tax 
lda 
sta 
inx 
stx 
j s r 
dfb 
dw 

fn1 ;save new l ength 199 

lda 
sta 
lda 
sta 
eor 

#main 
res vee 
i/main 
resvec+1 mli 

SETPFX 
:psetpfx 

;and set prefix 200 
201 #$AS ;set funny complement to 
202 sta resvec+2;avoi d rebooting on reset 
203 

148*Get application pathname 204 
149*If you do not need to know the name of your 205 

* Clear keyboard buffer 
* Clears all buffered keystrokes on IIgs 

150*app, or the directory it's in (possibly 
151*different from launch prefix), skip this. 
152*When this routine has completed, the memory 
153*area "progpathn will contain full pathname 
154*of application program. If the information 

206 
207 :clrkey bit 
208 
209 
210 

bit 
bmi 

kbd 
strobe 
: clrkey 

155*was unavailable (or pathname was too long) 211 * Begin program execution 
156*the str will be null. You may wish to strip 212 
157*the last name in path in order to get the 
158*application directory, then set prefix to 
159*that directory. This allows your program 
160*to find its files even if the prefix wasn ' t 
161*set to application's directory. It also 
162*assumes that the launching program followed 
163*ProDOS convention of placing application 
164*pathname at $280. 
165 

#0 
JtO 
fn1+1;check slash at strt 

213 
214 

jmp main 

215 * Fake RTS to eat output during BASIC startup 
216 
217 
218 
219 
220 
221 
222 
223 
224 

:nullout rts 

* MLI parmlists and data areas 

:pgetin f dfb $0A ;GET_ INFO pathna me 
dw 
ds 

progpath ;pathname 
15 ;we don't care about rest 

166 
167 
168 
169 
170 

:getpath ldy 
ldx 
lda 
cmp 
beq 

i'/' 225 :pgetpfx dfb $01 ;GET_PREFIX pathname 
: fulpath ; full path speci- 2 2 6 dw 

fied by launcher 
171 jsr 
172 dfb 
173 dw 
174 ldx 
175 :fulpath lda 
176 sta 
177 iny 
178 
179 
180 
181 
182 
183 

inx 
cpx 
beq 
cpy 
bne 

184 :chkpath stx 
185 
186 
187 
188 
189 
190 
191 

jsr 
dfb 
dw 
bee 
lda 
sta 

mli 
GETPFX 
:pgetpfx 
progpath 
fn1+1,y 
progpath+1,x 

#64 ;pathname overflow? 
:chkpath ;yes 
fn1 ;no, done copying path? 
:fulpath ; n o , do more 

progpath 
mli ;get info on pathname 
GET INFO 
:pgetinf 
:reset ;no errors 
#O;otherwise we've an error 
progpath ; make null 

192 * Set up reset vector 

227 
228 :psetpfx dfb 
229 dw 
230 
231 :ponline dfb 
232 dfb 
233 dw 
224 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 

:pclos e dfb 
dfb 

progpath ds 

main 
1st 

progpat h ;pathname 

$01 
fn2 

$02 
$00 
fn2+1 

;SET_PREFIX pathname 
; pathname 

; ONLINE parmlist 
;unit number 
;data buffer 

$01 ;CLOSE parmlist 
$00 ;ref num (all files) 

65 ; appl ication p athname 
; null if unknown 

;unneeded if you omit t he c o de 
which i nit ializes it 

;yer program goe s here 
off 



GENESYS 
Now available and shipping! 

Genesys ™ ... the premier resource creation, editing, and source code 

generation tool for the Apple ll GS. 

Genesys is the first Apple llGS CASE tool of its kind with an open

ended architecture, allowing for support of new resource types as Apple 

Computer releases them by simply copying additional Genesys Editors 

to a folder. Experienced programmers will appreciate the ability to 

create their own style of Genesys Editors, useful for private resource 

creation and maintenance. And Genesys generates fully commented 

source code for ANY language supporting System 5.0. Using the 

Genesys Source Code Generation Langugage (SCGL), the Genesys 

user can tailor the source code generated to their individual tastes, and 

also have the ability to generate source code for new languages, existing 

or not. 

Genesys allows creation and editing of resources using a WYSIWYG 

environment. Easily create and edit windows, dialogs, menu bars, 

menus menu items, strings of all types, all the new system 5.0 controls, 

icons, cursors, alerts, and much more without typing, compiling, or 

linking one single line of code. 

The items-created with Genesys can be saved as a resource fork or turned 

into source code for just about any language. Genesys even allows you 

to edit an existing program that makes use of resources. 

Genesys is guaranteed to cut weeks, even months, off program develop

ment and maintenance. Since the interface is attached to the program, 

additions and modifications take an instant effect. 

Budding programmers will appreciate the ability to generate source 

code in a variety of different languages, gaining an insight into 

resources and programming in general. Non-programmers can use 

Genesys to tailor programs that make use of resources. Renaming 

menus and menu items, adding keyboard equivalents to menus and 

controls, changing the shape and color of windows and controls, and 

more. The possibilities are almost limitless! 

Genesys is an indispensable tool for the programmer and non
programmer alike! 

Retail Price: $150.00 

Order by phone or by mail. Check, money order, MasterCard, Visa and 
American Express accepted. Please add $5.00 for SJH 
Simple Software Systems International, Inc. 

4612NorthLanding Dr. ( 4Q4) 928_4388 Marietta, GA 30066 

SSSi is pleased to announce that we will be carrying the GS Sauce memory card by 
Harris Laboratories. This card offers several unique features to Apple //gs owners: 

Made in USA 
Limited Lifetime Warranty 
100% DMA compatable 
100% GS/OS 5.0 and ProDOS 8 & 16 compatable 
Installs in less than 15 seconds! 
Low-power CMOS chips 
Uses "snap-in" SIMMs modules - the same ones used on the Macintosh 
Recycle your Macintosh SIMMs modules with GS Sauce. 
Expandable from 256K to 4 Meg of extra DRAM 

This card is 100% compatable with all GS software and GS operating systems. It 
is 100% tested before shipping and has a lifetime warranty. The CMOS technol
ogy means that it consumes less power and produces less heat thus making it easier 
on your //gs power supply. There are no jumpers, just simple to use switches to set 
the memory configuration. One step installation takes less than 15 seconds. 

Memory configurations: 
Apple //gs model 
256K (ROM 1) 

add these: 
(1) 256K SIMM 
(2) 256K SIMMs 
(4) 256K SIMMs 
(1) 1 Meg SIMM 
(2) 1 Meg SIMMs 
(4) 1 Meg SIMMs 

total GS RAM 
512K 
768K 

1.25 Meg 
1.25 Meg 
2.25 Meg 
4.25 Meg 

1 Meg (ROM 3) (1) 256K SIMM 1.25 Meg 
(2) 256K SIMMs 1.50 Meg 
(4) 256K SIMMs 1.78 Meg 
(1) 1 Meg SIMM 2.0 Meg 
(2) 1 Meg SIMMs 3.0 Meg 
(4) 1 Meg SIMMs 5.0 Meg 

Please note that you can not mix 256K and 1 Meg SIMMs packages on the same GS 
Sauce card, and that expansion must be performed in (1), (2) or (4) SIMMs modules. 

Pricing: 
We are offering a limited time "get acquainted" offer to our customers. The GS 
Sauce card is available from SSSi as: 

OK $89.95 -use your own 256K or 1 Meg SIMMs modules 
1 Meg $179.95 
2 Meg $269.85 
4 Meg $449.75 

l@i' We are making a special offer to our Genesys users: 
Buy Genesys and and get a coupon to purchase GS Sauce for: 

OK $79.95 - use your own 256K or 1 Meg SIMMs modules 
1 Meg $159.90 
2 Meg $239.85 
4 Meg $399.75 

We hope you will see what an excellant value the GS Sauce card is: low power 
consumption, SIMMs technology, inexpensive, made in USA and lifetime war
ranty! 
Call or write for seperate 256K and 1 Meg SIMMs modules to upgrade your GS 

•• ~-~--



by Murphy Sewall 
Reprinted from the APPLE PULP (E. Hartford, CT) 

Laser, Scanner, FAX, Modem. 
National Semiconductor has introduced the NS32GX320 Imaging/Signal processor which can allow a single 
peripheral to print, scan, send and receive FAXes and function as a modem. Printer-FAX-copiers that include the 
new chip are expected as early as next fall's Comdex. Ed Pullen, an analyst at San Jose market research firm 
lnfoCorp, predicts an 8 page per minute unit will cost about $2,400. - PC Week 28 May 

"What If?" Graphics. 
Bell Atlantic plans an August release of a Windows 3.0 program called Thinx which allows users to draw or import 
images, attach numeric values or other attributes to them, and then do ''what if" analysis by manipulating the 
images. Bell Atlantic product manager, Jack Coppley, says Thinx blends drawing tools with database and spread
sheet capabilities. The proposed retail price is $495. - PC Week 11 June 

Macintosh llgs? 
Maybe John Sculley's reference to a Macintosh llgs, at AppleVision '90 back in April, wasn't a "Freudian slip." 
Word from Germany is that Apple dealers are telling their salesmen not to turn away customers asking about the 
Apple II. Instead the salesman are told to promote the Mac II line which "can be upgraded to the Macintosh llgs 
early next year!" - found in my electronic mailbox 

Low End Macs. 
John Sculley is quoted as telling a developers conference recently "We clearly underestimated the market impor
tance for new low-end and laptop Macs. We will catch up by offering both low-end and laptop Macs over the next 
12 to 15 months." The long awaited, modular color K-12 Macintosh may be offered as early as October, but the 
"no compromises" (does that really mean llgs?) Apple II emulation card may not be ready until next spring (sources 
say it has existed in one form or another for more than two years, but production cost remains a problem). 
-Info World 4 June, A2-Central June, and my electronic mailbox 

Color PostScript. 
Seiko plans to ship a PostScript compatible color thermal printer in August for $7,000. The printer will work on a 
network and will offer Centronics, RS-232, and Appletalk ports. -Info World 28 May 

Apple Demos System 7. 
Apple engineer Chris Espinosa demonstrated the alpha version of System 7 for the Macintosh at MacAdemia in 
Rochester, New York at the end of May. The new operating system will, without question require 2 Mbytes of RAM 
and a hard disk for every machine running it. Apple engineers emphatically deny any plans to make a "cut-down" 
version for smaller machine (Does that say something about the memory of the K-12 Mac?). Espinosa was quite 
clear, it will run the Finder and at least one application on a Mac with only 2 Mbytes of RAM. He also is anticipating 
that Apple may bundle SIMMS with "a good price" (but for less than already is available by mail order). Apple will 



make System 7 the operating system bundled with every machine and will run on every machine within a year or so 
after introduction. - found in my electronic mailbox 

Micro Channel Extensions. 
Sixty-four bit and even 128 bit extensions of IBM's Micro Channel Architecture are under development. When these 
buses become available, desktop systems will approach the 1/0 channel capacity of mainframes. -Info World 11 
June 

PM Lite Lives. 
Cyco International and GeoWorks continue to work toward Presentation Manager interfaces for DOS even though 
IBM abandoned the idea last fall. Cyco will begin shipping Autobase, a graphical database system that includes a 
PM interface in August. GeoDOS from GeoWorks, a multitasking graphic environment that runs in as little as 512K, 
is scheduled for this Fall (yes, that is the same company that offered a graphic user interface for the Commodore 64 
back in antediluvian times - nearly five years ago). -PC Week 11 June 

PM Programming Difficulties. 
Programming in the Presentation Manager environment is said to be so difficult that IBM is hastily porting Motif to 
OS/2 to keep the Defense Department happy. Motif will permit X Window applications to run under OS/2. -PC 
Week 11 June 

Laptop Printer. 
Computer Product Plus has a 3.6 pound (including the batteries), 11.5 by 6.75 by 1.125 inch 24 pin thermal printer 
which prints full width (8.5 inch) paper. The WSP-200 printer is scheduled to ship in August for $349.95. Output 
quality is said to be comparable with many 24-pin impact printers. Future plans call for the addition of FAX 
and scanning capabilities. -Info World 21 May 

Flash (continued). 
There's some dispute about how many Macintosh programmers remain working at Beagle Brothers (see last 
month's column) . The original author of Flash has departed, but someone fixed a few bugs and made enough 
improvements to create version 1.1 (a free upgrade to registered Flash owners). Does building HyperCard stacks 
count as Mac programming, or must one Think C (4.0)? We'll find out if a substantially enhanced version 2.0 makes 
it to market "later this year," and if Flash continues to be a "quick, easy, fun, and inexpensive" utility even after 
System 7.0 is released. -found in my electronic mailbox 

Automatic, Continuous Backup 
Golden Triangle will offer an accelerated SCSI card and Macintosh software that simultaneously writes files to two 
hard drives as early as this month. The product named DiskTwin is expected to have a "street price" on the order of 
$500. Robert R. Tillman, a consultant to Golden Triangle, points out that, due to the falling price of hard drives, a 
user may be able to acquire Disk Twin and two 100 Mbyte drives for about $2,000. - Info World 4 June 

Another Bert Sighting 
Bert Kersey was recently spotted filling up his Porsche at a Speedway station in Detroit not too long ago. Rumor 
has it that he's taken flight due to the large amount of public attention focused on him recently. He can be reached 
only by cellular phone, and only when he's in his phone's limited calling area, so he's out of touch with civilization 
most of the time. - found in Ross's electronic mailbox 



The Return o(PunkWare 

Get Control of Yourself, 
YoungMan! 
By Jay Jennings 

I have some good news and I have some bad news. 
The good news is that System Disk 5.0 brought with 
it some fantastic capabilities, including a tool call 
that installs lots of hip controls in a window with just 
one line of code! The bad news is that you have to be 
a contortionist to get the information from those 
controls during your program. 

Way back when I was boy ... 

In the good old days, if you used a LineEdit control 
in a dialog box, your program could return the text 
input by using two toolcalls. If you used a check box, 
you could get or set the value with only one toolcall. 
Well, who ever said programming was supposed to 
be easy all the time? Yeah, we've had it easy up until 
now, but if you want to use the capabilities of 
-NewControl2, get used to the fact that it's a chore 
to get and set control info now. It's not an impossible 
task, but it's a pain in the gluteus maxim us to try and 
figure out...which is why I'm writing this: so that 
your derriere doesn't have to go through the same 
things that mine did. 

This article will introduce the concepts of using the 
new controls and I'll even include a few subroutines 
to get you started on the road to Control Mastery. 

The source code included in this article is based on 
some that was written a while back with the help of 
Eric Mueller, the IIgs editor of 8/16. Eric flew to 
Kansas City just to help me figure out the difference 
between a LineEdit Control Record and a LineEdit 
Edit Record. (Well, that wasn't the only reason, but 
this code was one of the many things that carne out 
of our marathon hacking sessions.) 

Just as a way of introduction, look at listing one. It 

shows how easy it is to create a bunch of controls 
using the -NewControl2 call. You basically pass it 
the address of a table that is composed of the address 
of your control templates. It's no big deal. In fact, it 
makes creating controls a breeze. 

Power Programming for Punks 

Take a look at listing two for the macros that we'll use 
for the following routines. I like to put macros like 
these together as it gives me a sense of working in a 
high level language, and makes the source code more 
readable. Notice that the macros I'm using here just 
parse the parameters and call different 
subroutines .. . that way, we can have fairly generic 
subroutines in our code, yet pull several of them 
together with a macro for one specific task. If there's 
one thing I've learned in the past few months, it's to 
make your code as generic as possible. There are 
those people who will tell you that by making code 
generic it won't run as fast . They're right. 

But most of the programs I write aren't so speed 
sensitive that a couple milliseconds are going to 
make any discernible difference. If you're writing an 
arcade game, hardcode some stuff. However, if 
you're writing "normal" applications, you'll find that 
by making generic routines your coding output will 
increase in the future. Cut and paste programming 
will make you a master programmer. And that's what 
these routines represent: the Lazy Man's Way to Pro
gramming. 

The first thing we'll tackle was the most complicated 
for Eric and I to figure out: getting text from an edit 
line that was created with -NewControl2. In the 
following examples, I'm assuming you used -New
Control2 to create several controls. You can use it to 



create just one control at a time, but since most 
windows have multiple controls, that's what my rou
tines were written for. If you are just creating one 
control, you'll already have the handle to that ex
tended control record since -NewControl2 will pass 
it back to you. When creating more than one control 
at a time, however, -NewControl2 doesn't pass back 
anything useful. 

The code in listing two is the subroutine that collects 
the text from a specified LineEdit control. All the 
needed parameters are passed via the stack. We 
need to know three things in order to get the informa
tion from the Line Edit control: first, the pointer to the 
window that the control lives in. (If you want to use 
the frontmost window, stick a zero in that slot.) Next. 
we need to know the ID number of the control. 
Finally, we need the address of a buffer we can stick 
the text from the control inyo. Make sure you've 
reserved enough space so that a long piece of text 
doesn't overwrite whatever happens to fall after the 
buffer in your source code. 

A Closer Look 

Okay, let's take a detailed look at what's happening 
in the GetELine subroutine. The first thing we do is 
to pull the parameters off the stack and store them 
in some temporary locations. Note that you must 
pull the retum address off the stack first and then 
retum it else bad things will happen. (Just use the X 
register to hold the retum address temporarily.) 

Next we use -GetCtlHandleFromiD to get the handle 
to the extended control record. This record was 
created for the control when the -NewControl2 tool 
call was used. You can get the extended control 
record layouts and descriptions from the Apple Ilgs 
Toolbox Reference, Volume 3, starting on page 28-87. 
You're allowed to read these records to get informa
tion, but setting the values directly is a no-no. 

Once we have the handle to the extended control 
record, we stick it in a direct page location in 
preparation for dereferencing. After that l-ean-now
do-it-with-my-eyes-closed procedure (editor: speak 
for yoursefl, man), we have a pointer to the LineEdit 
extended control record. Offset $1C into the ex
tended control record gives us the handle to the 
LineEdit edit record, and that's what we're looking 
for. We don't have to dereference that because eve-

rything else we need to do can be done with the 
handle. 

We're getting warmer ... 

The handle we have points to a record that looks 
quite a lot like that pictured on page 10-5 of the Apple 
Ilgs Toolbox Reference, Volume 1. Ah! We're getting 
closer to actually finding out what text was entered 
into the LineEdit control. 

We can now use our old friends-LEGetTextLen to get 
the length of the entered text. and -LEGetTextHand 
to get a handle to the text that was entered. Notice 
that after we get the length of the entered text, we 
store it in the first word of the buffer space that we've 
allocated for the LineEdit text. This is so that when 
all is said and done, we have a pascal string waiting 
for us to use. Then we add 1 to the address of the text 
buffer so that we don't overwrite our length byte with 
the text from the control. 

Finally, once we have the handle to the text, we can 
use -HandToPtr to move the text from the LineEdit 
control to our storage buffer. Ta-da! Several contor
tions. but once you have a generic routine, you can 
forget all about how hard it was the first time. 

Doing a one eighty 

The routine SetELine in listing four allows you to 
place text into a LineEdit control. It's very similar to 
the previous routine. It needs one more parameter 
passed on the stack, and after we get the handle to 
the LineEdit edit record, we only need to do one call, 
-LESetText, to complete the routine. 

Listing five shows two routines that can be used to 
activate or deactivate extended controls in a window. 
They're fairly simple and only require the window 
number and the control ID to use. The -GetCtlHan
dleFromiD call is used as before to get a handle to the 
specified control. Then-HiliteControl is used to tum 
the control on or off. You could combine the two 
routines into one by pushing one more parameter 
onto the stack: a zero to activate the control, or 255 
to deactivate it. This value would then be used as a 
parameter for the -HiliteControl call. For subrou
tines as small as these, I tend to go with simplifica
tion rather than saving a few bytes of code. On larger 



projects, you might need the extra room, however. 

Listing six contains two routines that you can use to 
check and uncheck check boxes (say that three 
times fast!). The routine GetCBValue retums a 
boolean value on the stack. You could also just load 
the accumulator with the value and retum. At the 
front ofthe routine, right before we shove the retum 
address back on the stack, we push a space word. 

Now look at the end of the routine. We place the 
boolean value we're retuming in that space that's 
right above the retum address. 

A bonus from Uncle Jay 

And finally, just to sweeten the pot, there are a 
couple routines in listing seven that come in handy 
when you're using GS/OS and Pascal strings in the 
same program. They're well commented and quite 
simple, so I won't go into them in detail. 

Bugsville 

There's a documented bug in -NewControl2 that you 
should be aware of (documented in Apple Ilgs Tech 
Note #82). When you use that call, the GrafPort is 
supposed to be set to the current window but doesn't 
do that as ofSystemDisk5.0.2. The way around this 
is to do a -SetPort call to the correct window before 
calling -NewControl2. That should make everything 
okey-dokey. 

This should be enough information to get you started 
on the road to control mastery. If this is all the 
information you've read about extended controls, 
however, you're doomed to a life of mediocrity. To 
become a true Apple IIgs programmer requires hard 
work, self denial, and the purchase of the Apple Ilgs 
Toolbox Reference, Volume Three. 

Listing One: NewControl2 Call 

-NewWindow #WindowTemplate 
PullLong WindowPtr 
-FrontWindow ;see what window is in front 
SetPort ;and set the GrafPort to it 

-NewControl2 WindowPtr;#3;#ClientCList 
pla 
pla ; just junk the return value 

ClientCList 
adrl ButtonTemplate 
adrl CheckBoxTemplate 
adrl LineEditTemplate 
adrl 0 

Listing Two: Get Edit Line Text Subroutine 

GetEditLineText mac 
PushLong ]1 
PushLong ]2 
PushLong ]3 

;window pointer 
; control ID 

;buffer address 
jsr GetELine 
eom 

SetEditLineText mac 
PushLong ]1 
PushLong ]2 
PushLong ]3 
lda ]4 

and #$DOFF 
ph a 
jsr SetELine 
eom 

GetText mac 

;which window to use 
;edit line control ID 

;address of text to set 
;length of text to set 

;window ptr, 
GetEditLine 
Pascal ToGS 
CopyGSString 
eom 

control ID, 
]1;]2;]3 

& storage buffer 

]3 

#GSString;]3;GSString 

PascalToGS mac 
PushLong ]1 ;address of the Pascal string 
jsr Pascal2GS 
eom 

GSToPascal mac 
PushLong ]1 ;address of the GS/OS string 
jsr GS2Pascal 
eom 

CopyGSString mac 
PushLong ]1 ;address of the source 
PushLong ]2 ;address of the destination 
pea 0 ; zero high word for # of bytes 

to move 
lda ]3 ;number of bytes to move 
inc 
inc ;add two so we move the length word, too 



ph a 
BlockMove 

eom 

GetCheckBoxValue mac 
PushLong ]1 
PushLong ]2 

; window ptr (or zero) 
;control ID number 

jsr 
eom 

GetCBValue 

SetCheckBoxValue mac 
PushLong ]1 
PushLong ]2 
PushWord ]3 

;window ptr (or zero) 
;control ID number 

;1=turn on, O=turn off 
jsr SetCBValue 
eom 

Listing Three : Get Edit Line Text Subroutine 

*============================================= 

* 
GetELine ent 

* 
* this plucks a piece of text from a specified 
edit line and stores 
* it as a Pascal string in a specified location 

* 
* enter: 

* I I 
* I - WindowPtr -1 ptr to wind O=top window 

* I I 
* 1--- ---------1 
* I I 
* I - IDNumber -1 ID number of control 

* I I 
* 1---- -------1 

* I 
* 1-
* I 
* 
* 
* 

TR#3 

I 
textAddr -1 buff addr for editln txt 

I 

<- stack pointer 

plx ;grab & save the return addr 
PullLong :TextAddr ;ptr to text buffer 
PullLong :IDNumber ;control ID number 
PullLong :Window;window we're working with 
phx ;replace the return addr 

-GetCtlHandleFromiD :Window; : IDNumber 
PullLong dpTemp ;store in direct pg space 

Deref dpTemp;dpTemp2;get ptr from the hndl 

ldy #$1c;get handle to LE: pg28-100 in 

lda [ dpTemp2] , y 
sta :Handle 
iny 
iny 
lda [ dpTemp2] , y 
sta :Handle+2 

-LEGetTextLen :Handle ;get length of text 

mov_l :TextAddr;dpTemp ;move text buff addr 
ldy #0 
pla ;now grab length from last toolcall 
sta [dpTemp],y ;store length in text buffer 
sta : TextLength ;and save for use in a sec 

add4 :TextAddr;#1; :TextAddr;pt past len byte 

-LEGetTextHand :Handle 
Pul1Long :Handle ;grab the text handle 

-HandToPtr :Handle;:TextAddr; :TextLength 
;copy info to text buffer 

rts 

:TextLength ds 4 ;length of the 
:TextAddr ds 4 ;address of the 

text 
text 

:Handle ds 4 ;handle to LineEdit Record 
:Window ds 4 ;window we're working with 
:IDNumber ds 4 ;control ID number 

Listing Four: Set Edit Line Text Subroutine 

*========================================== 

* 
SetELine ent 

* 
* this places a specified piece of text in a 
specified edit line 
* enter: 

* I I 
* 1- WindowPtr -1 ptr to wnd O=top window 

* I I 
* 1------ ----1 
* I I 
* 1- IDNumber - 1 ID number of control 

* I I 
* 1-------- -----1 
* I I 
* 1- textAddr -1 addr of text for edit line 

* I I 
* 1-------- -----1 
* . I text Length I length of text to set 

* 
* <- stack pointer 



* 
plx 
pla 

;grab & save the return addr 
;pull off the textLength 

and #$DOFF ;only allow 256 chars max 
sta :TextLength ;how many chars in text 
PullLong :TextAddr ;pointer to the text 
PullLong :IDNumber ;control ID number 
PullLong :Window;window we're working with 
phx ; replace the return addr 

-GetCtlHandleFromiD :Window; :IDNumber 
PullLong dpTemp;store in direct page space 

Deref dpTemp;dpTemp2;get pointer from hndl 

ldy #$lc;get hndle to LE:pg28-100 in TR#3 
lda [dpTemp2],y 
sta :Handle · 
iny 
iny 
lda [dpTemp2 ],y 
sta :Handle+2 

* 
ActivateControl ent 

* 
* enter: 

* 
PushLong WindowPtr 
PushLong ControliD 

* 
plx 
PullLong dpTemp2 
PullLong dpTemp 
phx 

; control ID 
;window pointer 

-GetCtlHandleFromiD dpTemp;dpTemp2 
PullLong dpTemp ;handle to control 

-HiliteControl #O;dpTemp 

rts 

Listing Six: Get CheckBox Value Subroutine 

*=============================================== 
-LESetText : TextAddr;:TextLength;:Handle * 

rts 

:TextLength ds 4 ; length of the text 
:TextAddr ds 4 ;address of the text 
:Handle ds 4 ;hndl to LineEdit Record 
:Window ds 4 ;wnd we're working with 
:IDNumber ds 4 ; control ID number 

Listing Five: Deactivate Control Subroutine 

*============================================= 

* 
DeactivateControl ent 

* 
* enter: 

* 
* 

plx 

PushLong WindowPtr 
PushLong ControliD 

PullLong dpTemp2 
PullLong dpTemp 
phx 

; control ID 
;window pointer 

-GetCtlHandleFromiD dpTemp;dpTemp2 
PullLong dpTemp ;handle to con-

trol 

-HiliteControl #255;dpTemp 

rts 

*======================================================t 

GetCBValue ent 

* 
* get the current value of a check box and return 
with it on the stack 
* enter: 
* 
* 
* 
* 
* 
* 
* 
* 
* 

1- WindowPtr 

I 

I 
- 1 ptr to window O=top wnd 

I 
1------- ·----1 
I I 
1- IDNumber -1 ID number of control 

I I 
------- <- stack 

* exit: 
* value !boolean value of check box 

<- stack * 
* 

plx 
PullLong dpTemp 
PullLong dpTemp2 
ph a 
phx 

;save return address 
;get the control ID 

;get the window pointer 
;space for result 

;and return address 

-GetCtlHandleFromiD dpTemp2;dpTemp 
PullLong dpTemp ;gethandle to control record 

Deref dpTemp;dpTemp2 

ldy #$12 ; offset into the control record 
lda [dpTemp2],y ;get the item value 
sta 3,s 
rts 

;and save it for later use 



*============================================= 

* 
SetCBValue ent 

* 
* set a check box to a specified value. 0 
checked 1 = checked 

not 

* enter: 

* I I 
* 1- WindowPtr -1 ptr to window O=top wnd 

* I I 
* 1-------- ·----1 
* I I 
* 1- IDNumber -1 ID number of control 

* I I 
* 1------ ·----1 
* I newCtlValue I va l for ck box (0 or 1) 

<- stack * 
* 
* exit: 

* 
plx 
ply 
Pull Long 
Pull Long 
phx 
phy 

;grab 
dpTemp 
dpTemp2 

;save return address 
new value for checkbox 

;get the control ID 
;get the window ptr 

;return address 
;new value for CB 

-GetCtlHandleFromiD dpTemp2;dpTemp 
PullLong dpTemp ;hndl to control record 

Deref dpTemp;dpTemp2 

ldy #$12 ;offset into control record 
pla ;retrieve the new value from stack 
sta [dpTemp2],y 
rts 

;set the item value 

Listing Seven : GSOS 2 Pascal String Covert 

*============================================= 

* 
GS2Pascal ent 

* 
* turn a GS/OS string into a Pascal string . 

* 
* enter: 

* I 
* 
* 
* 

1- StringAddr 

I 
-1 addr to GS/OS strin 

I 
<- stack pointer 

plx ;grab return addr 
PullLong dpTemp ;get addr to GS/OS string 
phx ; replace return addr 

lda [dpTemp] ;get the length word 
and #$00FF ;strip off anything over 255 
sta PascalString ;save the length byte 
tax 
beq 

ldy 
sep 

]loop 

:Zero 

#2 
#$20 

;don't do null strings 

;start past the length word 

lda 
sta 

[dpTemp] ,y 
Pasca1String-1,y 

;grab a character 
;and save it anew 

iny 
dex 
bne 
rep 

:Zero 
rts 

]loop 
#$20 

PascalString ent 
ds 255 ;255 = max length of a Pascal string 

*======================================== 

* 
Pascal2GS ent 

* 
* turn a Pascal string into a GS/OS string and 
store result at GSString 

* 
* enter: 

* I 
* 1- StringAddr 

* I 
* 

plx 

I 
-I 

I 

PullLong dpTemp 
phx 

address to pascal string 

<- stack pointer 

;grab return addr 
;get addr to Pascal str 

;replace return addr 

lda 
and 
sta 

[dpTemp] 
#$00FF 
GSString 

;get the length byte 
;strip garbage from 16bit accum 

; and save the new length word 

]loop 

: Zero 

tax 
beq : Zero 
ldy #1 
short a 

lda [dpTemp] ,y 
sta GSString+l,y 
iny 
dex 
bne ]loop 
long a 

rts 

;don't do null strings 
;start past length byte 

;get a character 
;save it in the new spot 

GSString ent 
ds 255 ;max allowed for Pascal string 



• 8/16 on Disk • 

The magazine you are now holding in your hands is but a subset of the material on the 8/16 disk. We 
have combed the BBS's and data services across the country to collect the best of the public domain 
and shareware offerings for programmers. Not only that. but we have extra articles and source code 
written by our staff. With DLT16 and DLT8 (Display Launcher Thingamajigs) to guide you, you can read 
articles. display graphics. and even launch applications. NOTE: DLT16 requires GS/OS v 5.02 on 
your system. 

Highlights (so far every disk has had more than 650K of material!): 

• March '90: 

• April'90: 

• May '90: 

• June '90: 

1 year - $69.95 

8 bit - the entire source code to Floyd Zink's Binary Library Utility. 16 bit - Bill 
Tudor's fantastic InitMaster CDEV, Parik Rao's Orca/ APW utilities 
8 bit - SoftWorks, an AppleWorks™ filecard interface for Applesoft programs, the 
source code to Bruce Mah's File Attribute Zapper. 16 bit- More Orca and APW 
utilities, Phil Data's APF viewer 
8 bit- Tom Hoover's AppleWorks Style Line Input. 16 bit- Bryan Pietrzak's shell 
utilities for Orca/ APW, Steve Lepisto's "Illusions of Motion". 
8 bit - 3D graphics package, MicroDot™ Demo, DiskWorks, 80 column screen 
editor. 16 bit- Assembly Source Code Converter (shareware). Install DA (on the fly; 
by our our own Eric Mueller). Find File source code. 

6 months - $39.95 3 months - $21 Individual disks are $8.00 each 

• Shem The Penman's Guide To Interactive Fiction • 

This is undoubtedly my personal favorite of all our software offerings. First of all, it is FUN. Second of 
all it is a very well organized, well written, and well programmed introduction to programming 
interactive fiction. It is, in fact. the only package of its kind I've ever seen! 

Author Chet Day is a professional writer (go buy Hacker at your nearest book store!) and an educator 
who is as conemed with the content of your interactive fiction program as with the form. This package 
is fun, entertaining, and useful. It includesApplesoft, ZBasic, and MicolAdvanced Basic "shells" which 
will drive your creations- $39.95 (both 5.25" and 3.5" disks supplied). P.S . The advantage to the 
ZBasic and Micol versions is that with the easy integration of text and graphics provided in those 
langauges. you can easily load a graphic and overlay text in the appropriate spots. 

• ProTools™ • 

Fast approaching its first birthday, our ProTools library for ZBasic programmers has grown into a 
mature and powerful product. It's bigger than ever, too. inCider's Joe Abernathy called it, " ... the only 
way to go for ZBasic programmers." 



ProTools includes a text based and a double high resolution graphics based desktop interface (pull
down menus, windows, mouse tracking, etc.) Both desktops support quick-key equivalents for menu 
items, too! We've added a third desktop package in version 2.5 ofProTools, too. This one is mouseless, 
meaning that it is entirely keyboard driven and therefore much more compact than its predecessors. 

ProTools contains literally scores of additional functions and routines, including: 

• FRAME.FN • SMART.INPUT.FN • SCROLL.MENU.FN 
• GETMACHID • GETKEY.FN • SCREENDUMPSO 
• SAVE_SCREEN • DIALOG • CRYPT 
• DATETIME • BAR CHARI' • LINE GRAPH 
• ONLINE • PASSWORD • READTEXT 
• SETSPEED •VERrMENU •PATHCK 

ProTools is $39.95 (your choice of 3.5" or 5.25" disks). 

• Back issues of The Sourceror's Apprentice • 

Ross's Recommendations: 

8 bit: 

16 bit: 

Feb '89 - Relocation Without Dislocation, by Karl Bunker 
... techniques for writing relocatable 8 bit code 
Jan, Mar, Apr, Aug '89- The Applesoft Connection Parts 1-4, by Jerry Kindall 
... using the ampersand vector and intemal Applesoft routines. A classic series. 
Jun '89- Peeking at Auxiliary Memory: A Monitor Utility, by Matthew Neuberg 
.. .lets the monitor display aux mem, an invaluable 128K programming tool. 
Sep '89- Getting More Value(s) From Your Game Port, Eric Soldan 
... increase range of values retumed by a joystick for DHR coordinates, etc . 

Jan '89- Programming with Class 1, byJayJennings 
... an introduction to GS/OS class 1 calls 
Mar & Jun '89- Vectored Joystick Programming, by Stephen Lepisto 
... a technique for increasing responsiveness in reading the joystick 
July '89- Making a List (and checking it twice), by Ross W. Lambert 
... an introduction to the GS List Manager 
Sep '89 - Generic Start II, The Sequel, by Jay Jennings 
... an introduction to the new start up song and dance for new system software 
Jan '90- Trapping Tricky Tool Errors, by Jay Jennings 
.. . a classy programmer's error trap for the GS. 

All back issues are $3.00 each (postage and handling included except for non-North American orders. 
Those of you on other shores please add $1.50 extra per issue) . 

Our guarantee: Ariel Publishing guarantees your satisfaction with our entire product line (software 
and publications). If you are ever dissatisfied with one of our products, we will cheerfully refund the 
amount you paid on your request. To order, just write to: Ariel Publishing, Box 398, Pateros, WA 
98846 or call (509) 923-2249. 



Hired Guns 
8 I 16 is providing a free service to all programmers 
(who are subscribers!): placement of a complimen
tary "situation wanted" ad. If you're available for hire 
and looking for a programming job (from full-time to 
freelance). a listing in this directory is your ticket to 
work. The ads are open to both 8 and 16 bit authors 
and are limited to 120 words or less. Be sure to give 
your address. phone number. and email addresses. 
and specify how much of a job you're after (part
time? full-time? royalty-based? etc). Send it to Situ
ation Wanted. c/o Ariel Publishing, Box 398, 
Pateros. WA 98846 

David Ely. 4567 W. 159th St. Lawndale, CA 90260. 213-371-
4350 eves. or leave message. GEnie: [DDEL Y). AOL: 
"DaveEiy". Experienced in 8 and 16 bit assembly, C, Forth and 
BASIC. Available for hourly or flat fee contract work on all Apple 

II platforms (llgs preferred). Have experience in writing desktop 
and classical applications in 8 or 16 bit environments, hardware 
and firmware interfacing, patching and program maintenance. 
Will work individually or as a part if a group. 

Jeff Holcomb, 18250 Marsh Ln, #515, Dallas, Tx 75287. (214) 
306-0710, leave message. GEnie: [Applied.Eng]. AOL: "AE 
Jeff". I am looking for part-time work in my spare time. I prefer 16-
bit programs but I am familiar with 8-bit. Strengths are GS/OS, 
desktop applications, and sound programming. I have also 
worked with hardware/firmware, desk accessories, CDevs, and 
in its. 

Tom Hoover, Rt 1 Box 362, Lorena, TX, 76655, 817-752-9731 
(day), 817-666-7605 (night). GEnie: Tom-Hoover; AOL: 
THoover; Pro-Beagle, Pro-APA, or Pro-Carolina: thoover. Inter
ests/strengths are 8-bit utility programs, including TimeOut(tm) 
applications, written in assembly language. Looking for "part
time" work only, to be done in my spare time. 

Jay Jennings, 14-9125 Robinson #2A, Overland Park, KS, 
66212. (913) 642-5396 late evenings or early mornings. GEnie: 
[A2.JAY] or [PUNKWARE]. Apple llgs assembly language pro
grammer. Looking for short term projects, typically 2-4 weeks. 
Could be convinced to do longer projects in some cases. Familiar 
with console, modem, and network programming, desk accesso
ries, programming utilities, data bases, etc. GS/OS only. No 
DOS 3.3 and no 8-bit (unless the money is extremely good and 

there's a company car involved). 

Jim Lazar, 1109 Niesen Road, Port Washington, Wl53074, 414-
284-4838 nights, 414-781-6700 days. AOL: "WinkieJim", GEnie: 
[WINKIEJIM]. Strengths include: GS/OS and ProDOS 8 work, 
desktop applications, CDAs, NDAs, INITs. Prefer working in 
6502 or 65816 Assembly. Have experience with large and small 
programs, utilities, games, disk copy routines and writing docu
mentation. Nibble, inCider and Caii -A.P.P.L.E. have published 
my work. Prefer 16-bit, but will do 8-bit work. Type of work 
depends on the situation, would consider full-time for career 
move/benefits, otherwise 25 hrs/month (flexible). 

Stephen P. Lepisto, 12907 Strathern St., N. Hollywood, CA 
91605, 818-503-2939. GEnie: S.LEPISTO. Available for full
time and part-time contract work (flat rate or royalties). Experi
enced in 6502 to 65816 assembly, BASIC and C. Can work in 
these or quickly learn new languages and hardware (some 
experience with UNIX, MS-DOS, 8086 assembly). Experience in 
games, utilities, educational, applications. Lots of experience in 

porting programs to Apples. Programmed Hacker II (64k Apple 
II), Labyrinth (128k Apple), Firepower GS and others. Can also 
write technical articles. 

Chris McKinsey, 3401 Alder Drive, Tacoma, WA, 98439, 206-
588-7985, GEnie: C.MCKINSEY. Experience in programming 
16-bit (65c816) games. Strengths include complex super hi-res 
animation, sound work (digitized and sequenced), and firmware. 
Looking for new llgs game to develop or the porting of games 
from other computers to the llgs. 

Eric Mueller, 2760 Roundtop Drive, Colorado Springs, CO, 
80918, 719-548-8295 anytime. GEnie : [A2PRO.ERIC], CIS: 
73567,1 656, AO: "A2Pro Eric". Strengths include GS/OS and 
ProDOS 8 work, console, and modem 1/0, working with hard
ware/firmware, desktop applications, desk accessories. Can 
also do tool patches, IN ITs, whatever. Don't call me for complex 
animation or sound work. Have experience working with others 
on programs, and on large applications. References available. 
Prefer 16 bit stuff always. Looking for _very_ small (less than 25 
hrs/month) jobs right now. 

Bryan Pietrzak, 4313 West 207th St, Matteson, II, 60443, (708) 
748-6363, or (217) 356-4351 . GEnie : B.PIETRZAK1. Strengths 
include database design and data structures (hashing, etc) and 

Continued on p. 43 



Please clip and mail this form to us. 
rather fax it, have your machine cal 
(509) 689-3136. 

The First Annual 8/16 Subscriber Survey 
For each question, circle the response that is nearest to your own point of view. 

1.) Overall, I rate 8/ 16's value as ... 

2.) The subject matter of the articles has been ... 

3 .) The quality of the writing and instruction in the 
articles has been ... 

4.) The general editorial tone of 8/16 is: 

Excellent Good Fair Poor 

Excellent Good Fair Poor 

Excellent Good Fair Poor 

too silly and flippant a little too light about right too serious 

5.) I find the level of difficulty of the magazine: 

way too hard to understand about right, clear but challenging not nearly meaty enough 

6.) I find the layout of 8/16: 

too spread out - scrunch it all up so we get more too scrunched up and unartistic 

about right, a decent tradeoff between 
quantity and readability 

7.) The balance between GS and 8 bit programming is ... 

too slanted in favor of the 8 bit Apples about right 

8.) I'd like to see an article about: 

too slanted in favor of the GS 



The First Annual Subscriber Survey (continued) 

9.) My age is: under 20 20-29 30-39 40-49 

10.) My annual income is approximately: under $20,000 $20,000 - 29,999 

$30,000-39,999 $40,000 - $49,000 

11.) In the next year I expect to purchase software (for either business or personal use) 
to the tune of: 

less than $50 $50-$149 $149-$249 $250-$399 $400+ 

12.) The software I purchase will most like fall into the following categories (Prioritize 
if more than one applies, that is, make the most likely # 1, the next most likely, #2, 
etc.): 

___ software development tools (languages, prototopyers, etc.) 
___ graphics 
___ e.ducational 
___ database 
___ spreadsheet 
___ word processor 

13.) I expect to purchase the following hardware products in the next year (for 
either business or personal use - circle all that apply): 

an Apple IIGS 
an Apple lie or lie+ 
a Laser (Apple II clone) 
a Macintosh 
an accelerator board 
a sound digitizer 
a hard drive 

a modem 
a dot matrix printer 
a laser printer 
a video scanner 
a MIDI board 
RAM chips 
a floppy drive 

14.) I currently own the following computers (circle all that apply): 

Apple lie, lie, lie+ 
Apple llgs 
Macintosh Plus 
Macintosh SE 
Macintosh SE/30, II, llci, llcx, or llfx 
an XT class IBM or compatible 
an AT class IBM or compatible 
other IBM compatible 

15.) My favorite 8/16 article to date has been: 



More Hired 
Guns ... 
Lane Roath, Ideas From the Deep, 309 Oak Ridge Lane, 
Haughton, LA 71037. (318) 949-8264 (leave message with 
phone number!) or (318) 221-5134 (work). GEnie: L.Roath, 
Delphi: LRoath. Available for part time work, large or small for any 
of the Apple II line, especially the llgs. Specializing in disk 1!0 
graphics and application programming. Wrote Dark Castle GS, 
Disk Utility Package, WordWorks WP, Project Manager, 
DeepDOS, LaneDOS, etc. including documentation. Currently 
work for Softdisk G-S. Work only in Assembler. 

Steve Stephenson (Synesis Systems), 2628 E. Isabella, Mesa, 
AZ, 85204, 602-926-8284, anytime. GEnie: [S-STEPHENSON), 
AOL: "Steve S816". Available for projects large or small on 
contract and/or royalty basis. Experienced in programming all 
Apple II computers (prefer IIGS), documentation writing/editing 
and project management. Have expertise in utilities, desk acces
sories, drivers, diagnostics, patching, modifying, and hardware 

level interfacing. Willing to maintain or customize your existing 
program. Work only in assembly language. Authored SQUIRT 
and Checkmate Technology's Apple Works Expander, managed 
the ProTERM(tm) project, and co-invented MemorySaver(tm) 
[patent pending]. 

Jonah Stich, 6 Lafayette West, Princeton, NJ, 08540. (609) 683-
1396, after 3:30 or on weekends. America Online (preferred): 
JonahS; GEnie: J.STICH1; InterNET: jonah@amos.ucsd.edu. 
Have been programming Apples for 7 years, and can speak 
Assembly (primary language) , C, and Pascal. Currently working 
on the GS, extremely skilled in graphics, animation, and sound, 

Advertiser Index 

Ariel Publishing ..................... 38,39 

Direct Micro ...................... ..... ... . 44 

Kitchen Sink Sofiware ........... ..... 8 

LRO Computer Sales ............... 17 

New Concepts Software ........ 25 

Night Owl Sofiware ............... .. . 2 

SSSi ...... .... .. ... .............................. 29 

So What Sofiware .................... 16 

Softdisk ......................... ............. 24 

Stone Edge Softv;are ........... .... 4 

as well as all aspects of toolbox programming. Prefer to work "'----------------------' 
alone or with one or two others. Can spend about 125 hours a 
month on projects. r 

Loren W. Wright, 6 Addison Road, Nashua, NH 03062, (603)-
891-2331. GEnie: [L.WRIGHT2]. Lots of experience in 6502 
assembly, BASIC, C, Pascal, and PLM on a wide variety of 
machines: Apple II, llgs, C64, VIC20, PET, Wang OIS. Some llgs 
desktop programming. Have done several C64<>Apple program 
conversions. Numerous articles and regular columns in Nibble 
and MICRO magazines. Product reviews and beta test ing. 
Specialties include user interface, graphics, and printer graph
ics. Looking for full-time work in New England and/or at-home 
contract work. 

Have your machine call our 
machine and maybe we can go out 
for a byte. 

Ariel's FAX line is: 

(509) 923-2249 



The Sensational Lasers 
Apple lle/llc Compatible 

$345s~7t~~~:~r~g~e!st 
._, Now Includes 

COPY II PLUS® 

The Laser 128® features full Apple® II compatibility with an internal disk drive. serial . parallel. modem. and 
mouse ports. When you're ready to expand your system, there 's an external dnve port and expans1on slot. The 
Laser t28 even 1ncludes t Ofree software programs' Take advantage of this exceptional value today ......... $345 

Super High Speed Option! 

only $385 
The LASER 128EX has all the features of the 
LASER 128, plus a triple speed processor and 
memory expansion to 1MB .... . ... $385.00 

The LASER 128EX/2 has all the features of the 
LASER 128EX, plus MIDI, Clock and Daisy 
Chain Drive Controller .. . .. . .... .. $420.00 

DISK DRIVES 
* 5.25 LASER/Apple 11c .. . .. .. .... $ 99.00 
* 5.25 LASER/Apple 11e . . .... . .... $ 99.00 
* 3.50 LASER/ Apple BOOK . ... ... . . . $179.00 
* 5.25 LASER Daisy Chain ... ~$109 .00 
* 3.50 LASER Daisy Chain ... ~$179.00 

USA MICRO 

Save Money by Buying 
a Complete Packagel 

THE STAR a LASER 128 Computer with 12" 
Monochrome Monitor and the LASER 145E 
Printer ................ ...... .... $620.00 

THE SUPERSTAR a LASER 128 Computer with 
14" RGB Color Monitor and the LASER 145E 
Printer ..... ..... ................ $785.00 

ACCESSORIES 
• 12" Monochrome Monitor ....... . $ 89.00 
• 14" RGB Color Monitor ........... $249.00 
* LASER 190E Printer ............. $219.00 
* LASER 145E Printer ....... ~$189.00 
• Mouse ........................ $ 59.00 
• Joystick (3) Button . ............. $ 29.00 
• 1200/2400 Baud Modem Auto ... .. $129.00 

YOUR DIRECT SOURCE FOR APPLE 
AND IBM COMPATIBLE COMPUTERS 

Laser 128 rs a regrstered trademark of V1deo Technology Computers, Inc_ Apple. Apple lie, Apple llc and lmagewrller are registered trademarks of Apple Computer. lnc. 

BULK RATE 
U.S. POSTAGE 

PAID 
PATEROS, WA 
PERMIT NO.7 

http://apple2scans.net


	8/16 - Toto, I don' think we're in Kansas anymore
	The Publisher's Pen - Ross W. Lambert
	IIGS Programming: MultiBank: A IIGS Monitor Utility - James Hodge
	The ZBasic Zealot: Checking Out the Locals - Ross W. Lambert
	Programming the Extended Keyboard: Getting Over Extended - Dr. Doni G. Grande
	Classic Apple Hacking: Generic StartUp 8 - Jerry Kindall
	VaporWare - Murphy Sewall
	The Return of PunkWare: Get Control of Yourself, Young Man! - Jay Jennings
	From the House of Ariel
	Hired Guns
	The First Annual 8/16 Subscriber Survey



